Spaces:
Sleeping
Sleeping
sanbo
commited on
Commit
·
b017a1d
1
Parent(s):
7dda3aa
update sth. at 2025-03-03 19:59:27
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import torch
|
|
5 |
import gradio as gr
|
6 |
from fastapi import FastAPI, HTTPException, Depends
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
-
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
9 |
from pydantic import BaseModel, Field, model_validator
|
10 |
from typing import List, Dict, Optional
|
11 |
|
@@ -106,7 +105,6 @@ app.add_middleware(
|
|
106 |
allow_methods=["*"],
|
107 |
allow_headers=["*"],
|
108 |
)
|
109 |
-
security = HTTPBearer()
|
110 |
|
111 |
@app.post("/embed", response_model=EmbeddingResponse)
|
112 |
@app.post("/api/embeddings", response_model=EmbeddingResponse)
|
@@ -117,7 +115,7 @@ security = HTTPBearer()
|
|
117 |
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
118 |
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
|
119 |
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
120 |
-
async def generate_embeddings(request: EmbeddingRequest
|
121 |
try:
|
122 |
# 计算token数量
|
123 |
token_count = len(embedding_service.tokenizer.encode(request.inputs))
|
|
|
5 |
import gradio as gr
|
6 |
from fastapi import FastAPI, HTTPException, Depends
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
8 |
from pydantic import BaseModel, Field, model_validator
|
9 |
from typing import List, Dict, Optional
|
10 |
|
|
|
105 |
allow_methods=["*"],
|
106 |
allow_headers=["*"],
|
107 |
)
|
|
|
108 |
|
109 |
@app.post("/embed", response_model=EmbeddingResponse)
|
110 |
@app.post("/api/embeddings", response_model=EmbeddingResponse)
|
|
|
115 |
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
116 |
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
|
117 |
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
118 |
+
async def generate_embeddings(request: EmbeddingRequest):
|
119 |
try:
|
120 |
# 计算token数量
|
121 |
token_count = len(embedding_service.tokenizer.encode(request.inputs))
|