import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load the model and tokenizer model = GPT2LMHeadModel.from_pretrained("samwell/SamGPT") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Assuming you used the GPT-2 tokenizer def generate_text(prompt, max_length): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt"), gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length") ], outputs=gr.Textbox(label="Generated Text"), title="SamGPT Text Generation", description="Enter a prompt to generate text with SamGPT." ) iface.launch()