|
import gradio as gr |
|
import torch |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
model = GPT2LMHeadModel.from_pretrained("samwell/SamGPT") |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
def generate_text(prompt, max_length): |
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=[ |
|
gr.Textbox(label="Prompt"), |
|
gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length") |
|
], |
|
outputs=gr.Textbox(label="Generated Text"), |
|
title="SamGPT Text Generation", |
|
description="Enter a prompt to generate text with SamGPT." |
|
) |
|
|
|
iface.launch() |