import functools import io import json import logging import os.path import pathlib import typing import beartype import einops import einops.layers.torch import gradio as gr import saev.activations import saev.config import saev.nn import saev.visuals import torch from jaxtyping import Float, Int, UInt8, jaxtyped from PIL import Image from torch import Tensor import constants import data logger = logging.getLogger("app.py") #################### # Global Constants # #################### DEBUG = False """Whether we are debugging.""" max_frequency = 1e-2 """Maximum frequency. Any feature that fires more than this is ignored.""" n_sae_latents = 3 """Number of SAE latents to show.""" n_sae_examples = 4 """Number of SAE examples per latent to show.""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") """Hardware accelerator, if any.""" RESIZE_SIZE = 512 """Resize shorter size to this size in pixels.""" CROP_SIZE = (448, 448) """Crop size in pixels.""" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") """Hardware accelerator, if any.""" CWD = pathlib.Path(".") """Current working directory.""" ########## # Models # ########## @functools.cache def load_vit() -> tuple[saev.activations.WrappedVisionTransformer, typing.Callable]: vit = ( saev.activations.WrappedVisionTransformer( saev.config.Activations( model_family="dinov2", model_ckpt="dinov2_vitb14_reg", layers=[-2], n_patches_per_img=256, ) ) .to(DEVICE) .eval() ) vit_transform = saev.activations.make_img_transform("dinov2", "dinov2_vitb14_reg") logger.info("Loaded ViT.") return vit, vit_transform @functools.cache def load_sae() -> saev.nn.SparseAutoencoder: """ Loads a sparse autoencoder from disk. """ sae_ckpt_fpath = CWD / "assets" / "sae.pt" sae = saev.nn.load(str(sae_ckpt_fpath)) sae.to(device).eval() return sae @functools.cache def load_clf() -> torch.nn.Module: # /home/stevens.994/projects/saev/checkpoints/contrib/semseg/lr_0_001__wd_0_001/model_step8000.pt head_ckpt_fpath = CWD / "assets" / "clf.pt" with open(head_ckpt_fpath, "rb") as fd: kwargs = json.loads(fd.readline().decode()) buffer = io.BytesIO(fd.read()) model = torch.nn.Linear(**kwargs) state_dict = torch.load(buffer, weights_only=True, map_location=device) model.load_state_dict(state_dict) model = model.to(device).eval() return model class RestOfDinoV2(torch.nn.Module): def __init__(self, *, n_end_layers: int): super().__init__() self.vit = torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg") self.n_end_layers = n_end_layers def forward_start(self, x: Float[Tensor, "batch channels width height"]): x_BPD = self.vit.prepare_tokens_with_masks(x) for blk in self.vit.blocks[: -self.n_end_layers]: x_BPD = blk(x_BPD) return x_BPD def forward_end(self, x_BPD: Float[Tensor, "batch n_patches dim"]): for blk in self.vit.blocks[-self.n_end_layers :]: x_BPD = blk(x_BPD) x_BPD = self.vit.norm(x_BPD) return x_BPD[:, self.vit.num_register_tokens + 1 :] rest_of_vit = RestOfDinoV2(n_end_layers=1) rest_of_vit = rest_of_vit.to(device) #################### # Global Variables # #################### @beartype.beartype def load_tensor(path: str | pathlib.Path) -> Tensor: return torch.load(path, weights_only=True, map_location="cpu") # top_img_i = load_tensor(CWD / "assets" / "top_img_i.pt") # top_values = load_tensor(CWD / "assets" / "top_values_uint8.pt") # sparsity = load_tensor(CWD / "assets" / "sparsity.pt") # mask = torch.ones((sae.cfg.d_sae), dtype=bool) # mask = mask & (sparsity < max_frequency) ############ # Datasets # ############ # in1k_dataset = saev.activations.get_dataset( # saev.config.ImagenetDataset(), # img_transform=v2.Compose([ # v2.Resize(size=(512, 512)), # v2.CenterCrop(size=(448, 448)), # ]), # ) # acts_dataset = saev.activations.Dataset( # saev.config.DataLoad( # shard_root="/local/scratch/stevens.994/cache/saev/a1f842330bb568b2fb05c15d4fa4252fb7f5204837335000d9fd420f120cd03e", # scale_mean=not DEBUG, # scale_norm=not DEBUG, # layer=-2, # ) # ) # vit_dataset = saev.activations.Ade20k( # saev.config.Ade20kDataset( # root="/research/nfs_su_809/workspace/stevens.994/datasets/ade20k/" # ), # img_transform=v2.Compose([ # v2.Resize(size=(256, 256)), # v2.CenterCrop(size=(224, 224)), # v2.ToImage(), # v2.ToDtype(torch.float32, scale=True), # v2.Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]), # ]), # ) ####################### # Inference Functions # ####################### @beartype.beartype class Example(typing.TypedDict): """Represents an example image and its associated label. Used to store examples of SAE latent activations for visualization. """ orig_url: str """The URL or path to access the original example image.""" highlighted_url: str """The URL or path to access the SAE-highlighted image.""" index: int """Dataset index.""" @beartype.beartype class SaeActivation(typing.TypedDict): """Represents the activation pattern of a single SAE latent across patches. This captures how strongly a particular SAE latent fires on different patches of an input image. """ latent: int """The index of the SAE latent being measured.""" highlighted_url: str """The image with the colormaps applied.""" activations: list[float] """The activation values of this latent across different patches. Each value represents how strongly this latent fired on a particular patch.""" examples: list[Example] """Top examples for this latent.""" @beartype.beartype def get_image(i: int) -> tuple[str, str, int]: img_sized = data.to_sized(data.get_image(i)) seg_sized = data.to_sized(data.get_seg(i)) seg_u8_sized = data.to_u8(seg_sized) seg_img_sized = data.u8_to_img(seg_u8_sized) return data.img_to_base64(img_sized), data.img_to_base64(seg_img_sized), i @beartype.beartype @torch.inference_mode def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]: """ Given a particular cell, returns some highlighted images showing what feature fires most on this cell. """ if not patches: return [] vit, vit_transform = load_vit() sae = load_sae() img = data.get_image(image_i) x = vit_transform(img)[None, ...].to(DEVICE) _, vit_acts_BLPD = vit(x) vit_acts_PD = ( vit_acts_BLPD[0, 0, 1:].to(DEVICE).clamp(-1e-5, 1e5) - (constants.DINOV2_IMAGENET1K_MEAN).to(DEVICE) ) / constants.DINOV2_IMAGENET1K_SCALAR _, f_x_PS, _ = sae(vit_acts_PD) # Ignore [CLS] token and get just the requested latents. acts_SP = einops.rearrange(f_x_PS, "patches n_latents -> n_latents patches") logger.info("Got SAE activations.") top_img_i, top_values = load_tensors(model_cfg) logger.info("Loaded top SAE activations for '%s'.", model_name) vit_acts_MD = torch.stack([ acts_dataset[image_i * acts_dataset.metadata.n_patches_per_img + i]["act"] for i in patches ]).to(device) _, f_x_MS, _ = sae(vit_acts_MD) f_x_S = f_x_MS.sum(axis=0) latents = torch.argsort(f_x_S, descending=True).cpu() latents = latents[mask[latents]][:n_sae_latents].tolist() images = [] for latent in latents: elems, seen_i_im = [], set() for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]): if i_im in seen_i_im: continue example = in1k_dataset[i_im] elems.append( saev.visuals.GridElement(example["image"], example["label"], values_p) ) seen_i_im.add(i_im) # How to scale values. upper = None if top_values[latent].numel() > 0: upper = top_values[latent].max().item() latent_images = [make_img(elem, upper=upper) for elem in elems[:n_sae_examples]] while len(latent_images) < n_sae_examples: latent_images += [None] images.extend(latent_images) return images + latents @torch.inference_mode def get_true_labels(image_i: int) -> Image.Image: seg = human_dataset[image_i]["segmentation"] image = seg_to_img(seg) return image @torch.inference_mode def get_pred_labels(i: int) -> list[Image.Image | list[int]]: sample = vit_dataset[i] x = sample["image"][None, ...].to(device) x_BPD = rest_of_vit.forward_start(x) x_BPD = rest_of_vit.forward_end(x_BPD) x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16) logits_WHC = head(x_WHD) pred_WH = logits_WHC.argmax(axis=-1) preds = einops.rearrange(pred_WH, "w h -> (w h)").tolist() return [seg_to_img(upsample(pred_WH)), preds] @beartype.beartype def unscaled(x: float, max_obs: float) -> float: """Scale from [-10, 10] to [10 * -max_obs, 10 * max_obs].""" return map_range(x, (-10.0, 10.0), (-10.0 * max_obs, 10.0 * max_obs)) @beartype.beartype def map_range( x: float, domain: tuple[float | int, float | int], range: tuple[float | int, float | int], ): a, b = domain c, d = range if not (a <= x <= b): raise ValueError(f"x={x:.3f} must be in {[a, b]}.") return c + (x - a) * (d - c) / (b - a) @torch.inference_mode def get_modified_labels( i: int, latent1: int, latent2: int, latent3: int, value1: float, value2: float, value3: float, ) -> list[Image.Image | list[int]]: sample = vit_dataset[i] x = sample["image"][None, ...].to(device) x_BPD = rest_of_vit.forward_start(x) x_hat_BPD, f_x_BPS, _ = sae(x_BPD) err_BPD = x_BPD - x_hat_BPD values = torch.tensor( [ unscaled(float(value), top_values[latent].max().item()) for value, latent in [ (value1, latent1), (value2, latent2), (value3, latent3), ] ], device=device, ) f_x_BPS[..., torch.tensor([latent1, latent2, latent3], device=device)] = values # Reproduce the SAE forward pass after f_x modified_x_hat_BPD = ( einops.einsum( f_x_BPS, sae.W_dec, "batch patches d_sae, d_sae d_vit -> batch patches d_vit", ) + sae.b_dec ) modified_BPD = err_BPD + modified_x_hat_BPD modified_BPD = rest_of_vit.forward_end(modified_BPD) logits_BPC = head(modified_BPD) pred_P = logits_BPC[0].argmax(axis=-1) pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16) return seg_to_img(upsample(pred_WH)), pred_P.tolist() @jaxtyped(typechecker=beartype.beartype) @torch.inference_mode def upsample( x_WH: Int[Tensor, "width_ps height_ps"], ) -> UInt8[Tensor, "width_px height_px"]: return ( torch.nn.functional.interpolate( x_WH.view((1, 1, 16, 16)).float(), scale_factor=28, ) .view((448, 448)) .type(torch.uint8) ) @beartype.beartype def make_img( elem: saev.visuals.GridElement, *, upper: float | None = None ) -> Image.Image: # Resize to 256x256 and crop to 224x224 resize_size_px = (512, 512) resize_w_px, resize_h_px = resize_size_px crop_size_px = (448, 448) crop_w_px, crop_h_px = crop_size_px crop_coords_px = ( (resize_w_px - crop_w_px) // 2, (resize_h_px - crop_h_px) // 2, (resize_w_px + crop_w_px) // 2, (resize_h_px + crop_h_px) // 2, ) img = elem.img.resize(resize_size_px).crop(crop_coords_px) img = saev.imaging.add_highlights( img, elem.patches.numpy(), upper=upper, opacity=0.5 ) return img with gr.Blocks() as demo: image_number = gr.Number(label="Validation Example") input_image_base64 = gr.Text(label="Image in Base64") true_labels_base64 = gr.Text(label="Labels in Base64") get_input_image_btn = gr.Button(value="Get Input Image") get_input_image_btn.click( get_image, inputs=[image_number], outputs=[input_image_base64, true_labels_base64, image_number], api_name="get-image", ) # input_image = gr.Image( # label="Input Image", # sources=["upload", "clipboard"], # type="pil", # interactive=True, # ) # patch_numbers = gr.CheckboxGroup(label="Image Patch", choices=list(range(256))) # top_latent_numbers = gr.CheckboxGroup(label="Top Latents") # top_latent_numbers = [ # gr.Number(label="Top Latents #{j+1}") for j in range(n_sae_latents) # ] # sae_example_images = [ # gr.Image(label=f"Latent #{j}, Example #{i + 1}", format="png") # for i in range(n_sae_examples) # for j in range(n_sae_latents) # ] patches_json = gr.JSON(label="Patches", value=[]) activations_json = gr.JSON(label="Activations", value=[]) get_sae_activations_btn = gr.Button(value="Get SAE Activations") get_sae_activations_btn.click( get_sae_activations, inputs=[image_number, patches_json], outputs=[activations_json], api_name="get-sae-examples", ) # semseg_image = gr.Image(label="Semantic Segmentaions", format="png") # semseg_colors = gr.CheckboxGroup( # label="Sem Seg Colors", choices=list(range(1, 151)) # ) # get_pred_labels_btn = gr.Button(value="Get Pred. Labels") # get_pred_labels_btn.click( # get_pred_labels, # inputs=[image_number], # outputs=[semseg_image, semseg_colors], # api_name="get-pred-labels", # ) # get_true_labels_btn = gr.Button(value="Get True Label") # get_true_labels_btn.click( # get_true_labels, # inputs=[image_number], # outputs=semseg_image, # api_name="get-true-labels", # ) # latent_numbers = [gr.Number(label=f"Latent {i + 1}") for i in range(3)] # value_sliders = [ # gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3) # ] # get_modified_labels_btn = gr.Button(value="Get Modified Label") # get_modified_labels_btn.click( # get_modified_labels, # inputs=[image_number] + latent_numbers + value_sliders, # outputs=[semseg_image, semseg_colors], # api_name="get-modified-labels", # ) if __name__ == "__main__": demo.launch()