Samuel Stevens
initial commit
dc20bdb
raw
history blame
14.6 kB
import os.path
import typing
import functools
import beartype
import einops
import einops.layers.torch
import gradio as gr
import torch
from jaxtyping import Float, Int, UInt8, jaxtyped
from PIL import Image
from torch import Tensor
import saev.activations
import saev.config
import saev.nn
import saev.visuals
from .. import training
from . import data
####################
# Global Constants #
####################
DEBUG = False
"""Whether we are debugging."""
max_frequency = 1e-2
"""Maximum frequency. Any feature that fires more than this is ignored."""
ckpt = "oebd6e6i"
"""Which SAE checkpoint to use."""
n_sae_latents = 3
"""Number of SAE latents to show."""
n_sae_examples = 4
"""Number of SAE examples per latent to show."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
"""Hardware accelerator, if any."""
RESIZE_SIZE = 512
"""Resize shorter size to this size in pixels."""
CROP_SIZE = (448, 448)
"""Crop size in pixels."""
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
"""Hardware accelerator, if any."""
####################
# Helper Functions #
####################
@beartype.beartype
def load_tensor(path: str) -> Tensor:
return torch.load(path, weights_only=True, map_location="cpu")
##########
# Models #
##########
@functools.cache
def load_vit(
model_cfg: modeling.Config,
) -> tuple[
activations.WrappedVisionTransformer,
typing.Callable,
float,
Float[Tensor, " d_vit"],
]:
vit = (
saev.activations.WrappedVisionTransformer(model_cfg.wrapped_cfg)
.to(DEVICE)
.eval()
)
vit_transform = saev.activations.make_img_transform(
model_cfg.vit_family, model_cfg.vit_ckpt
)
logger.info("Loaded ViT: %s.", model_cfg.key)
try:
# Normalizing constants
acts_dataset = saev.activations.Dataset(model_cfg.acts_cfg)
logger.info("Loaded dataset norms: %s.", model_cfg.key)
except RuntimeError as err:
logger.warning("Error loading ViT: %s", err)
return None, None, None, None
return vit, vit_transform, acts_dataset.scalar.item(), acts_dataset.act_mean
sae_ckpt_fpath = f"/home/stevens.994/projects/saev/checkpoints/{ckpt}/sae.pt"
sae = saev.nn.load(sae_ckpt_fpath)
sae.to(device).eval()
head_ckpt_fpath = "/home/stevens.994/projects/saev/checkpoints/contrib/semseg/lr_0_001__wd_0_001/model_step8000.pt"
head = training.load(head_ckpt_fpath)
head = head.to(device).eval()
class RestOfDinoV2(torch.nn.Module):
def __init__(self, *, n_end_layers: int):
super().__init__()
self.vit = torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14_reg")
self.n_end_layers = n_end_layers
def forward_start(self, x: Float[Tensor, "batch channels width height"]):
x_BPD = self.vit.prepare_tokens_with_masks(x)
for blk in self.vit.blocks[: -self.n_end_layers]:
x_BPD = blk(x_BPD)
return x_BPD
def forward_end(self, x_BPD: Float[Tensor, "batch n_patches dim"]):
for blk in self.vit.blocks[-self.n_end_layers :]:
x_BPD = blk(x_BPD)
x_BPD = self.vit.norm(x_BPD)
return x_BPD[:, self.vit.num_register_tokens + 1 :]
rest_of_vit = RestOfDinoV2(n_end_layers=1)
rest_of_vit = rest_of_vit.to(device)
####################
# Global Variables #
####################
ckpt_data_root = (
f"/research/nfs_su_809/workspace/stevens.994/saev/features/{ckpt}/sort_by_patch"
)
top_img_i = load_tensor(os.path.join(ckpt_data_root, "top_img_i.pt"))
top_values = load_tensor(os.path.join(ckpt_data_root, "top_values.pt"))
sparsity = load_tensor(os.path.join(ckpt_data_root, "sparsity.pt"))
mask = torch.ones((sae.cfg.d_sae), dtype=bool)
mask = mask & (sparsity < max_frequency)
############
# Datasets #
############
# in1k_dataset = saev.activations.get_dataset(
# saev.config.ImagenetDataset(),
# img_transform=v2.Compose([
# v2.Resize(size=(512, 512)),
# v2.CenterCrop(size=(448, 448)),
# ]),
# )
# acts_dataset = saev.activations.Dataset(
# saev.config.DataLoad(
# shard_root="/local/scratch/stevens.994/cache/saev/a1f842330bb568b2fb05c15d4fa4252fb7f5204837335000d9fd420f120cd03e",
# scale_mean=not DEBUG,
# scale_norm=not DEBUG,
# layer=-2,
# )
# )
# vit_dataset = saev.activations.Ade20k(
# saev.config.Ade20kDataset(
# root="/research/nfs_su_809/workspace/stevens.994/datasets/ade20k/"
# ),
# img_transform=v2.Compose([
# v2.Resize(size=(256, 256)),
# v2.CenterCrop(size=(224, 224)),
# v2.ToImage(),
# v2.ToDtype(torch.float32, scale=True),
# v2.Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]),
# ]),
# )
#######################
# Inference Functions #
#######################
@beartype.beartype
class Example(typing.TypedDict):
"""Represents an example image and its associated label.
Used to store examples of SAE latent activations for visualization.
"""
orig_url: str
"""The URL or path to access the original example image."""
highlighted_url: str
"""The URL or path to access the SAE-highlighted image."""
index: int
"""Dataset index."""
@beartype.beartype
class SaeActivation(typing.TypedDict):
"""Represents the activation pattern of a single SAE latent across patches.
This captures how strongly a particular SAE latent fires on different patches of an input image.
"""
latent: int
"""The index of the SAE latent being measured."""
highlighted_url: str
"""The image with the colormaps applied."""
activations: list[float]
"""The activation values of this latent across different patches. Each value represents how strongly this latent fired on a particular patch."""
examples: list[Example]
"""Top examples for this latent."""
@beartype.beartype
def get_image(image_i: int) -> tuple[str, str, int]:
img_sized, labels_sized = data.get_sample(image_i)
return data.pil_to_base64(img_sized), data.pil_to_base64(labels_sized), image_i
@beartype.beartype
@torch.inference_mode
def get_sae_activations(image_i: int, patches: list[int]) -> list[SaeActivation]:
"""
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
"""
if not patches:
return []
vit, vit_transform, scalar, mean = load_vit(model_cfg)
if vit is None:
logger.warning("Skipping ViT '%s'", model_name)
return []
sae = load_sae(model_cfg)
mean = mean.to(DEVICE)
x = vit_transform(img_p)[None, ...].to(DEVICE)
_, vit_acts_BLPD = vit(x)
vit_acts_PD = (vit_acts_BLPD[0, 0, 1:].to(DEVICE).clamp(-1e-5, 1e5) - mean) / scalar
_, f_x_PS, _ = sae(vit_acts_PD)
# Ignore [CLS] token and get just the requested latents.
acts_SP = einops.rearrange(f_x_PS, "patches n_latents -> n_latents patches")
logger.info("Got SAE activations for '%s'.", model_name)
top_img_i, top_values = load_tensors(model_cfg)
logger.info("Loaded top SAE activations for '%s'.", model_name)
breakpoint()
vit_acts_MD = torch.stack([
acts_dataset[image_i * acts_dataset.metadata.n_patches_per_img + i]["act"]
for i in patches
]).to(device)
_, f_x_MS, _ = sae(vit_acts_MD)
f_x_S = f_x_MS.sum(axis=0)
latents = torch.argsort(f_x_S, descending=True).cpu()
latents = latents[mask[latents]][:n_sae_latents].tolist()
images = []
for latent in latents:
elems, seen_i_im = [], set()
for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
if i_im in seen_i_im:
continue
example = in1k_dataset[i_im]
elems.append(
saev.visuals.GridElement(example["image"], example["label"], values_p)
)
seen_i_im.add(i_im)
# How to scale values.
upper = None
if top_values[latent].numel() > 0:
upper = top_values[latent].max().item()
latent_images = [make_img(elem, upper=upper) for elem in elems[:n_sae_examples]]
while len(latent_images) < n_sae_examples:
latent_images += [None]
images.extend(latent_images)
return images + latents
@torch.inference_mode
def get_true_labels(image_i: int) -> Image.Image:
seg = human_dataset[image_i]["segmentation"]
image = seg_to_img(seg)
return image
@torch.inference_mode
def get_pred_labels(i: int) -> list[Image.Image | list[int]]:
sample = vit_dataset[i]
x = sample["image"][None, ...].to(device)
x_BPD = rest_of_vit.forward_start(x)
x_BPD = rest_of_vit.forward_end(x_BPD)
x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)
logits_WHC = head(x_WHD)
pred_WH = logits_WHC.argmax(axis=-1)
preds = einops.rearrange(pred_WH, "w h -> (w h)").tolist()
return [seg_to_img(upsample(pred_WH)), preds]
@beartype.beartype
def unscaled(x: float, max_obs: float) -> float:
"""Scale from [-10, 10] to [10 * -max_obs, 10 * max_obs]."""
return map_range(x, (-10.0, 10.0), (-10.0 * max_obs, 10.0 * max_obs))
@beartype.beartype
def map_range(
x: float,
domain: tuple[float | int, float | int],
range: tuple[float | int, float | int],
):
a, b = domain
c, d = range
if not (a <= x <= b):
raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
return c + (x - a) * (d - c) / (b - a)
@torch.inference_mode
def get_modified_labels(
i: int,
latent1: int,
latent2: int,
latent3: int,
value1: float,
value2: float,
value3: float,
) -> list[Image.Image | list[int]]:
sample = vit_dataset[i]
x = sample["image"][None, ...].to(device)
x_BPD = rest_of_vit.forward_start(x)
x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
err_BPD = x_BPD - x_hat_BPD
values = torch.tensor(
[
unscaled(float(value), top_values[latent].max().item())
for value, latent in [
(value1, latent1),
(value2, latent2),
(value3, latent3),
]
],
device=device,
)
f_x_BPS[..., torch.tensor([latent1, latent2, latent3], device=device)] = values
# Reproduce the SAE forward pass after f_x
modified_x_hat_BPD = (
einops.einsum(
f_x_BPS,
sae.W_dec,
"batch patches d_sae, d_sae d_vit -> batch patches d_vit",
)
+ sae.b_dec
)
modified_BPD = err_BPD + modified_x_hat_BPD
modified_BPD = rest_of_vit.forward_end(modified_BPD)
logits_BPC = head(modified_BPD)
pred_P = logits_BPC[0].argmax(axis=-1)
pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
return seg_to_img(upsample(pred_WH)), pred_P.tolist()
@jaxtyped(typechecker=beartype.beartype)
@torch.inference_mode
def upsample(
x_WH: Int[Tensor, "width_ps height_ps"],
) -> UInt8[Tensor, "width_px height_px"]:
return (
torch.nn.functional.interpolate(
x_WH.view((1, 1, 16, 16)).float(),
scale_factor=28,
)
.view((448, 448))
.type(torch.uint8)
)
@beartype.beartype
def make_img(
elem: saev.visuals.GridElement, *, upper: float | None = None
) -> Image.Image:
# Resize to 256x256 and crop to 224x224
resize_size_px = (512, 512)
resize_w_px, resize_h_px = resize_size_px
crop_size_px = (448, 448)
crop_w_px, crop_h_px = crop_size_px
crop_coords_px = (
(resize_w_px - crop_w_px) // 2,
(resize_h_px - crop_h_px) // 2,
(resize_w_px + crop_w_px) // 2,
(resize_h_px + crop_h_px) // 2,
)
img = elem.img.resize(resize_size_px).crop(crop_coords_px)
img = saev.imaging.add_highlights(
img, elem.patches.numpy(), upper=upper, opacity=0.5
)
return img
with gr.Blocks() as demo:
image_number = gr.Number(label="Validation Example")
input_image_base64 = gr.Text(label="Image in Base64")
true_labels_base64 = gr.Text(label="Labels in Base64")
get_input_image_btn = gr.Button(value="Get Input Image")
get_input_image_btn.click(
get_image,
inputs=[image_number],
outputs=[input_image_base64, true_labels_base64, image_number],
api_name="get-image",
)
# input_image = gr.Image(
# label="Input Image",
# sources=["upload", "clipboard"],
# type="pil",
# interactive=True,
# )
# patch_numbers = gr.CheckboxGroup(label="Image Patch", choices=list(range(256)))
# top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
# top_latent_numbers = [
# gr.Number(label="Top Latents #{j+1}") for j in range(n_sae_latents)
# ]
# sae_example_images = [
# gr.Image(label=f"Latent #{j}, Example #{i + 1}", format="png")
# for i in range(n_sae_examples)
# for j in range(n_sae_latents)
# ]
patches_json = gr.JSON(label="Patches", value=[])
activations_json = gr.JSON(label="Activations", value=[])
get_sae_activations_btn = gr.Button(value="Get SAE Activations")
get_sae_activations_btn.click(
get_sae_activations,
inputs=[image_number, patches_json],
outputs=[activations_json],
api_name="get-sae-examples",
)
# semseg_image = gr.Image(label="Semantic Segmentaions", format="png")
# semseg_colors = gr.CheckboxGroup(
# label="Sem Seg Colors", choices=list(range(1, 151))
# )
# get_pred_labels_btn = gr.Button(value="Get Pred. Labels")
# get_pred_labels_btn.click(
# get_pred_labels,
# inputs=[image_number],
# outputs=[semseg_image, semseg_colors],
# api_name="get-pred-labels",
# )
# get_true_labels_btn = gr.Button(value="Get True Label")
# get_true_labels_btn.click(
# get_true_labels,
# inputs=[image_number],
# outputs=semseg_image,
# api_name="get-true-labels",
# )
# latent_numbers = [gr.Number(label=f"Latent {i + 1}") for i in range(3)]
# value_sliders = [
# gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3)
# ]
# get_modified_labels_btn = gr.Button(value="Get Modified Label")
# get_modified_labels_btn.click(
# get_modified_labels,
# inputs=[image_number] + latent_numbers + value_sliders,
# outputs=[semseg_image, semseg_colors],
# api_name="get-modified-labels",
# )
if __name__ == "__main__":
demo.launch()