File size: 5,633 Bytes
e508563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import base64
import dataclasses
import functools
import io
import logging
import os.path
import random

import beartype
import einops.layers.torch
import numpy as np
import torchvision.datasets.folder
from jaxtyping import UInt8, jaxtyped
from PIL import Image
from torch import Tensor
from torchvision.transforms import v2

logger = logging.getLogger("data.py")


@beartype.beartype
class Ade20k:
    @beartype.beartype
    @dataclasses.dataclass(frozen=True)
    class Sample:
        img_path: str
        seg_path: str
        label: str
        target: int

    samples: list[Sample]

    def __init__(self, root: str, split: str):
        self.logger = logging.getLogger("ade20k")
        self.root = root
        self.split = split
        self.img_dir = os.path.join(root, "images")
        self.seg_dir = os.path.join(root, "annotations")

        # Check that we have the right path.
        for subdir in ("images", "annotations"):
            if not os.path.isdir(os.path.join(root, subdir)):
                # Something is missing.
                if os.path.realpath(root).endswith(subdir):
                    self.logger.warning(
                        "The ADE20K root should contain 'images/' and 'annotations/' directories."
                    )
                raise ValueError(f"Can't find path '{os.path.join(root, subdir)}'.")

        _, split_mapping = torchvision.datasets.folder.find_classes(self.img_dir)
        split_lookup: dict[int, str] = {
            value: key for key, value in split_mapping.items()
        }
        self.loader = torchvision.datasets.folder.default_loader

        err_msg = f"Split '{split}' not in '{set(split_lookup.values())}'."
        assert split in set(split_lookup.values()), err_msg

        # Load all the image paths.
        imgs: list[str] = [
            path
            for path, s in torchvision.datasets.folder.make_dataset(
                self.img_dir,
                split_mapping,
                extensions=torchvision.datasets.folder.IMG_EXTENSIONS,
            )
            if split_lookup[s] == split
        ]

        segs: list[str] = [
            path
            for path, s in torchvision.datasets.folder.make_dataset(
                self.seg_dir,
                split_mapping,
                extensions=torchvision.datasets.folder.IMG_EXTENSIONS,
            )
            if split_lookup[s] == split
        ]

        # Load all the targets, classes and mappings
        with open(os.path.join(root, "sceneCategories.txt")) as fd:
            img_labels: list[str] = [line.split()[1] for line in fd.readlines()]

        label_set = sorted(set(img_labels))
        label_to_idx = {label: i for i, label in enumerate(label_set)}

        self.samples = [
            self.Sample(img_path, seg_path, label, label_to_idx[label])
            for img_path, seg_path, label in zip(imgs, segs, img_labels)
        ]

    def __getitem__(self, index: int) -> dict[str, object]:
        # Convert to dict.
        sample = dataclasses.asdict(self.samples[index])

        sample["image"] = self.loader(sample.pop("img_path"))
        sample["segmentation"] = Image.open(sample.pop("seg_path")).convert("L")
        sample["index"] = index

        return sample

    def __len__(self) -> int:
        return len(self.samples)


@functools.cache
def get_dataset() -> Ade20k:
    return Ade20k(
        root="/research/nfs_su_809/workspace/stevens.994/datasets/ade20k/",
        split="validation",
    )


@beartype.beartype
def get_sample(i: int) -> dict[str, object]:
    dataset = get_dataset()
    return dataset[i]


@jaxtyped(typechecker=beartype.beartype)
def make_colors() -> UInt8[np.ndarray, "n 3"]:
    values = (0, 51, 102, 153, 204, 255)
    colors = []
    for r in values:
        for g in values:
            for b in values:
                colors.append((r, g, b))
    # Fixed seed
    random.Random(42).shuffle(colors)
    colors = np.array(colors, dtype=np.uint8)

    # Fixed colors for example 3122
    colors[2] = np.array([201, 249, 255], dtype=np.uint8)
    colors[4] = np.array([151, 204, 4], dtype=np.uint8)
    colors[13] = np.array([104, 139, 88], dtype=np.uint8)
    colors[16] = np.array([54, 48, 32], dtype=np.uint8)
    colors[26] = np.array([45, 125, 210], dtype=np.uint8)
    colors[46] = np.array([238, 185, 2], dtype=np.uint8)
    colors[52] = np.array([88, 91, 86], dtype=np.uint8)
    colors[72] = np.array([76, 46, 5], dtype=np.uint8)
    colors[94] = np.array([12, 15, 10], dtype=np.uint8)

    return colors


colors = make_colors()

resize_transform = v2.Compose([
    v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
    v2.CenterCrop((448, 448)),
])


@beartype.beartype
def to_sized(img_raw: Image.Image) -> Image.Image:
    return resize_transform(img_raw)


u8_transform = v2.Compose([
    v2.ToImage(),
    einops.layers.torch.Rearrange("() width height -> width height"),
])


@beartype.beartype
def to_u8(seg_raw: Image.Image) -> UInt8[Tensor, "width height"]:
    return u8_transform(seg_raw)


@jaxtyped(typechecker=beartype.beartype)
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
    map = map.cpu().numpy()
    width, height = map.shape
    colored = np.zeros((width, height, 3), dtype=np.uint8)
    for i, color in enumerate(colors):
        colored[map == i + 1, :] = color

    return Image.fromarray(colored)


@beartype.beartype
def img_to_base64(img: Image.Image) -> str:
    buf = io.BytesIO()
    img.save(buf, format="webp")
    b64 = base64.b64encode(buf.getvalue())
    s64 = b64.decode("utf8")
    return "data:image/webp;base64," + s64