File size: 5,633 Bytes
e508563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import base64
import dataclasses
import functools
import io
import logging
import os.path
import random
import beartype
import einops.layers.torch
import numpy as np
import torchvision.datasets.folder
from jaxtyping import UInt8, jaxtyped
from PIL import Image
from torch import Tensor
from torchvision.transforms import v2
logger = logging.getLogger("data.py")
@beartype.beartype
class Ade20k:
@beartype.beartype
@dataclasses.dataclass(frozen=True)
class Sample:
img_path: str
seg_path: str
label: str
target: int
samples: list[Sample]
def __init__(self, root: str, split: str):
self.logger = logging.getLogger("ade20k")
self.root = root
self.split = split
self.img_dir = os.path.join(root, "images")
self.seg_dir = os.path.join(root, "annotations")
# Check that we have the right path.
for subdir in ("images", "annotations"):
if not os.path.isdir(os.path.join(root, subdir)):
# Something is missing.
if os.path.realpath(root).endswith(subdir):
self.logger.warning(
"The ADE20K root should contain 'images/' and 'annotations/' directories."
)
raise ValueError(f"Can't find path '{os.path.join(root, subdir)}'.")
_, split_mapping = torchvision.datasets.folder.find_classes(self.img_dir)
split_lookup: dict[int, str] = {
value: key for key, value in split_mapping.items()
}
self.loader = torchvision.datasets.folder.default_loader
err_msg = f"Split '{split}' not in '{set(split_lookup.values())}'."
assert split in set(split_lookup.values()), err_msg
# Load all the image paths.
imgs: list[str] = [
path
for path, s in torchvision.datasets.folder.make_dataset(
self.img_dir,
split_mapping,
extensions=torchvision.datasets.folder.IMG_EXTENSIONS,
)
if split_lookup[s] == split
]
segs: list[str] = [
path
for path, s in torchvision.datasets.folder.make_dataset(
self.seg_dir,
split_mapping,
extensions=torchvision.datasets.folder.IMG_EXTENSIONS,
)
if split_lookup[s] == split
]
# Load all the targets, classes and mappings
with open(os.path.join(root, "sceneCategories.txt")) as fd:
img_labels: list[str] = [line.split()[1] for line in fd.readlines()]
label_set = sorted(set(img_labels))
label_to_idx = {label: i for i, label in enumerate(label_set)}
self.samples = [
self.Sample(img_path, seg_path, label, label_to_idx[label])
for img_path, seg_path, label in zip(imgs, segs, img_labels)
]
def __getitem__(self, index: int) -> dict[str, object]:
# Convert to dict.
sample = dataclasses.asdict(self.samples[index])
sample["image"] = self.loader(sample.pop("img_path"))
sample["segmentation"] = Image.open(sample.pop("seg_path")).convert("L")
sample["index"] = index
return sample
def __len__(self) -> int:
return len(self.samples)
@functools.cache
def get_dataset() -> Ade20k:
return Ade20k(
root="/research/nfs_su_809/workspace/stevens.994/datasets/ade20k/",
split="validation",
)
@beartype.beartype
def get_sample(i: int) -> dict[str, object]:
dataset = get_dataset()
return dataset[i]
@jaxtyped(typechecker=beartype.beartype)
def make_colors() -> UInt8[np.ndarray, "n 3"]:
values = (0, 51, 102, 153, 204, 255)
colors = []
for r in values:
for g in values:
for b in values:
colors.append((r, g, b))
# Fixed seed
random.Random(42).shuffle(colors)
colors = np.array(colors, dtype=np.uint8)
# Fixed colors for example 3122
colors[2] = np.array([201, 249, 255], dtype=np.uint8)
colors[4] = np.array([151, 204, 4], dtype=np.uint8)
colors[13] = np.array([104, 139, 88], dtype=np.uint8)
colors[16] = np.array([54, 48, 32], dtype=np.uint8)
colors[26] = np.array([45, 125, 210], dtype=np.uint8)
colors[46] = np.array([238, 185, 2], dtype=np.uint8)
colors[52] = np.array([88, 91, 86], dtype=np.uint8)
colors[72] = np.array([76, 46, 5], dtype=np.uint8)
colors[94] = np.array([12, 15, 10], dtype=np.uint8)
return colors
colors = make_colors()
resize_transform = v2.Compose([
v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
v2.CenterCrop((448, 448)),
])
@beartype.beartype
def to_sized(img_raw: Image.Image) -> Image.Image:
return resize_transform(img_raw)
u8_transform = v2.Compose([
v2.ToImage(),
einops.layers.torch.Rearrange("() width height -> width height"),
])
@beartype.beartype
def to_u8(seg_raw: Image.Image) -> UInt8[Tensor, "width height"]:
return u8_transform(seg_raw)
@jaxtyped(typechecker=beartype.beartype)
def u8_to_img(map: UInt8[Tensor, "width height"]) -> Image.Image:
map = map.cpu().numpy()
width, height = map.shape
colored = np.zeros((width, height, 3), dtype=np.uint8)
for i, color in enumerate(colors):
colored[map == i + 1, :] = color
return Image.fromarray(colored)
@beartype.beartype
def img_to_base64(img: Image.Image) -> str:
buf = io.BytesIO()
img.save(buf, format="webp")
b64 = base64.b64encode(buf.getvalue())
s64 = b64.decode("utf8")
return "data:image/webp;base64," + s64
|