File size: 8,029 Bytes
9d09fd6
aa2bec3
 
875ad97
aa2bec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c25e8c
 
 
 
 
 
 
 
aa2bec3
 
 
 
 
 
 
 
 
 
 
 
 
38af0d3
aa2bec3
6c5d119
875ad97
 
 
 
 
 
aa2bec3
 
 
 
 
 
 
 
 
 
0c25e8c
9d09fd6
 
1b5edf5
9d09fd6
0c25e8c
1b5edf5
0c25e8c
1b5edf5
 
0c25e8c
1b5edf5
 
0c25e8c
1b5edf5
 
 
 
0c25e8c
1b5edf5
 
 
 
 
 
 
 
0c25e8c
1b5edf5
 
 
0c25e8c
1b5edf5
0c25e8c
1b5edf5
 
0c25e8c
1b5edf5
 
0c25e8c
9d09fd6
 
 
 
c5d0599
38af0d3
aa2bec3
 
 
 
 
 
38af0d3
aa2bec3
 
 
 
 
 
 
 
 
6c5d119
875ad97
 
 
 
 
 
 
aa2bec3
1676c9d
 
38af0d3
6c5d119
875ad97
38af0d3
875ad97
 
38af0d3
875ad97
 
 
38af0d3
 
875ad97
 
 
38af0d3
 
 
 
875ad97
 
 
 
1676c9d
875ad97
1676c9d
aa2bec3
 
 
875ad97
1676c9d
875ad97
1676c9d
aa2bec3
 
 
 
 
875ad97
1676c9d
 
 
aa2bec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676c9d
 
 
 
aa2bec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# app.py
import streamlit as st
import os
import tempfile
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")

# Initialize session state
if "vectorstore" not in st.session_state:
    st.session_state.vectorstore = None
if "history" not in st.session_state:
    st.session_state.history = []
if "authenticated" not in st.session_state:
    st.session_state.authenticated = False

# Sidebar
with st.sidebar:
    # BSNL Logo (local file with error handling)
    try:
        st.image(
            "bsnl_logo.png",
            width=200
        )
    except FileNotFoundError:
        st.warning("BSNL logo not found. Please ensure 'bsnl_logo.png' exists in the project root.")
    st.header("RAG Control Panel")
    api_key_input = st.text_input("Enter RAG Access Key", type="password")
    
    # Authentication
    if st.button("Authenticate"):
        if api_key_input == RAG_ACCESS_KEY:
            st.session_state.authenticated = True
            st.success("Authentication successful!")
        else:
            st.error("Invalid API key.")
    
    # File uploader
    if st.session_state.authenticated:
        input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
        
        if st.button("Process File") and input_data is not None:
            try:
                vector_store = process_input(input_data)
                st.session_state.vectorstore = vector_store
                st.success("File processed successfully. You can now ask questions.")
            except (PermissionError, OSError) as e:
                st.error(f"Error processing file: {str(e)}. Check file permissions or server configuration.")
    
    # Display chat history
    st.subheader("Chat History")
    for i, (q, a) in enumerate(st.session_state.history):
        st.write(f"**Q{i+1}:** {q}")
        st.write(f"**A{i+1}:** {a}")
        st.markdown("---")

# Main app
def main():
    # Inject CSS for simple color scheme and clean styling
    st.markdown("""
        <style>
        @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
        .stApp {
            background-color: #FFFFFF; /* White background */
            font-family: 'Roboto', sans-serif;
            color: #333333;
        }
        .stTextInput > div > div > input {
            background-color: #FFFFFF;
            color: #333333;
            border-radius: 8px;
            border: 1px solid #007BFF;
            padding: 10px;
            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        }
        .stButton > button {
            background-color: #007BFF;
            color: white;
            border-radius: 8px;
            padding: 10px 20px;
            border: none;
            transition: all 0.3s ease;
            box-shadow: 0 2px 4px rgba(0,0,0,0.2);
        }
        .stButton > button:hover {
            background-color: #0056b3;
            transform: scale(1.05);
        }
        .stSidebar {
            background-color: #F5F5F5; /* Light gray */
            padding: 20px;
            border-right: 2px solid #007BFF;
        }
        h1, h2, h3 {
            color: #333333;
        }
        .stSpinner > div > div {
            border-color: #007BFF transparent transparent transparent;
        }
        </style>
    """, unsafe_allow_html=True)
    
    st.title("RAG Q&A App with Mistral AI")
    st.markdown("Welcome to the BSNL RAG App! Upload your PDF files and ask questions with ease.", unsafe_allow_html=True)
    
    if not st.session_state.authenticated:
        st.warning("Please authenticate with your API key in the sidebar.")
        return
    
    if st.session_state.vectorstore is None:
        st.info("Please upload and process a PDF file in the sidebar.")
        return
    
    query = st.text_input("Enter your question:")
    if st.button("Submit") and query:
        with st.spinner("Generating answer..."):
            answer = answer_question(st.session_state.vectorstore, query)
            st.session_state.history.append((query, answer))
            st.write("**Answer:**", answer)

def process_input(input_data):
    # Create uploads directory with proper permissions
    try:
        os.makedirs("uploads", exist_ok=True)
        os.chmod("uploads", 0o777)  # Ensure write permissions
    except PermissionError as e:
        st.error(f"Failed to create uploads directory: {str(e)}")
        raise
    
    # Initialize progress bar and status
    progress_bar = st.progress(0)
    status = st.status("Processing PDF file...", expanded=True)
    
    # Step 1: Save file temporarily
    status.update(label="Saving PDF file...")
    progress_bar.progress(0.20)
    
    with tempfile.NamedTemporaryFile(delete=False, dir="uploads", suffix=".pdf") as tmp_file:
        tmp_file.write(input_data.read())
        tmp_file_path = tmp_file.name
    
    # Step 2: Read PDF file
    status.update(label="Reading PDF file...")
    progress_bar.progress(0.40)
    
    try:
        pdf_reader = PdfReader(tmp_file_path)
        documents = ""
        for page in pdf_reader.pages:
            documents += page.extract_text() or ""
    finally:
        os.remove(tmp_file_path)  # Clean up temporary file
    
    # Step 3: Split text
    status.update(label="Splitting text into chunks...")
    progress_bar.progress(0.60)
    
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    texts = text_splitter.split_text(documents)
    
    # Step 4: Create embeddings
    status.update(label="Creating embeddings...")
    progress_bar.progress(0.80)
    
    hf_embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-mpnet-base-v2",
        model_kwargs={'device': 'cpu'}
    )
    
    # Step 5: Initialize FAISS vector store
    status.update(label="Building vector store...")
    progress_bar.progress(0.90)
    
    dimension = len(hf_embeddings.embed_query("sample text"))
    index = faiss.IndexFlatL2(dimension)
    vector_store = FAISS(
        embedding_function=hf_embeddings,
        index=index,
        docstore=InMemoryDocstore({}),
        index_to_docstore_id={}
    )
    
    # Add texts to vector store
    uuids = [str(uuid.uuid4()) for _ in range(len(texts))]
    vector_store.add_texts(texts, ids=uuids)
    
    # Save vector store locally
    vector_store.save_local("vectorstore/faiss_index")
    
    # Complete processing
    status.update(label="Processing complete!", state="complete")
    progress_bar.progress(1.0)
    
    return vector_store

def answer_question(vectorstore, query):
    llm = HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.1",
        model_kwargs={"temperature": 0.7, "max_length": 512},
        huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
    )
    
    retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    
    prompt_template = PromptTemplate(
        template="Use the provided context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
        input_variables=["context", "question"]
    )
    
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=False,
        chain_type_kwargs={"prompt": prompt_template}
    )
    
    result = qa_chain({"query": query})
    return result["result"].split("Answer:")[-1].strip()

if __name__ == "__main__":
    main()