Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import re
|
| 4 |
+
import requests
|
| 5 |
+
import yfinance as yf
|
| 6 |
+
import warnings
|
| 7 |
+
warnings.filterwarnings("ignore")
|
| 8 |
+
|
| 9 |
+
from bs4 import BeautifulSoup
|
| 10 |
+
from langchain_community.tools import WikipediaQueryRun
|
| 11 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
| 12 |
+
from langchain_community.utilities.alpha_vantage import AlphaVantageAPIWrapper
|
| 13 |
+
from langchain.agents import AgentType, initialize_agent, load_tools
|
| 14 |
+
from langchain_community.tools import ShellTool
|
| 15 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 16 |
+
from langchain.tools import BaseTool, StructuredTool, Tool, tool,DuckDuckGoSearchRun
|
| 17 |
+
from langchain import LLMMathChain
|
| 18 |
+
from pydantic import BaseModel, Field
|
| 19 |
+
from langchain.tools import DuckDuckGoSearchRun
|
| 20 |
+
|
| 21 |
+
search=DuckDuckGoSearchRun()
|
| 22 |
+
llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2")
|
| 23 |
+
|
| 24 |
+
# Fetch stock data from Yahoo Finance
|
| 25 |
+
def get_stock_price(ticker,history=5):
|
| 26 |
+
# time.sleep(4) #To avoid rate limit error
|
| 27 |
+
if "." in ticker:
|
| 28 |
+
ticker=ticker.split(".")[0]
|
| 29 |
+
ticker=ticker+".NS"
|
| 30 |
+
stock = yf.Ticker(ticker)
|
| 31 |
+
df = stock.history(period="1y")
|
| 32 |
+
df=df[["Close","Volume"]]
|
| 33 |
+
df.index=[str(x).split()[0] for x in list(df.index)]
|
| 34 |
+
df.index.rename("Date",inplace=True)
|
| 35 |
+
df=df[-history:]
|
| 36 |
+
# print(df.columns)
|
| 37 |
+
|
| 38 |
+
return df.to_string()
|
| 39 |
+
|
| 40 |
+
# Script to scrap top5 googgle news for given company name
|
| 41 |
+
def google_query(search_term):
|
| 42 |
+
if "news" not in search_term:
|
| 43 |
+
search_term=search_term+" stock news"
|
| 44 |
+
url=f"https://www.google.com/search?q={search_term}&cr=countryIN"
|
| 45 |
+
url=re.sub(r"\s","+",url)
|
| 46 |
+
return url
|
| 47 |
+
|
| 48 |
+
def get_recent_stock_news(company_name):
|
| 49 |
+
# time.sleep(4) #To avoid rate limit error
|
| 50 |
+
headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36'}
|
| 51 |
+
|
| 52 |
+
g_query=google_query(company_name)
|
| 53 |
+
res=requests.get(g_query,headers=headers).text
|
| 54 |
+
soup=BeautifulSoup(res,"html.parser")
|
| 55 |
+
news=[]
|
| 56 |
+
for n in soup.find_all("div","n0jPhd ynAwRc tNxQIb nDgy9d"):
|
| 57 |
+
news.append(n.text)
|
| 58 |
+
for n in soup.find_all("div","IJl0Z"):
|
| 59 |
+
news.append(n.text)
|
| 60 |
+
|
| 61 |
+
if len(news)>6:
|
| 62 |
+
news=news[:4]
|
| 63 |
+
else:
|
| 64 |
+
news=news
|
| 65 |
+
news_string=""
|
| 66 |
+
for i,n in enumerate(news):
|
| 67 |
+
news_string+=f"{i}. {n}\n"
|
| 68 |
+
top5_news="Recent News:\n\n"+news_string
|
| 69 |
+
|
| 70 |
+
return top5_news
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Fetch financial statements from Yahoo Finance
|
| 74 |
+
def get_financial_statements(ticker):
|
| 75 |
+
# time.sleep(4) #To avoid rate limit error
|
| 76 |
+
if "." in ticker:
|
| 77 |
+
ticker=ticker.split(".")[0]
|
| 78 |
+
else:
|
| 79 |
+
ticker=ticker
|
| 80 |
+
ticker=ticker+".NS"
|
| 81 |
+
company = yf.Ticker(ticker)
|
| 82 |
+
balance_sheet = company.balance_sheet
|
| 83 |
+
if balance_sheet.shape[1]>=3:
|
| 84 |
+
balance_sheet=balance_sheet.iloc[:,:3] # Remove 4th years data
|
| 85 |
+
balance_sheet=balance_sheet.dropna(how="any")
|
| 86 |
+
balance_sheet = balance_sheet.to_string()
|
| 87 |
+
return balance_sheet
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
#Openai function calling
|
| 91 |
+
function=[
|
| 92 |
+
{
|
| 93 |
+
"name": "get_company_Stock_ticker",
|
| 94 |
+
"description": "This will get the indian NSE/BSE stock ticker of the company",
|
| 95 |
+
"parameters": {
|
| 96 |
+
"type": "object",
|
| 97 |
+
"properties": {
|
| 98 |
+
"ticker_symbol": {
|
| 99 |
+
"type": "string",
|
| 100 |
+
"description": "This is the stock symbol of the company.",
|
| 101 |
+
},
|
| 102 |
+
|
| 103 |
+
"company_name": {
|
| 104 |
+
"type": "string",
|
| 105 |
+
"description": "This is the name of the company given in query",
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
"required": ["company_name","ticker_symbol"],
|
| 109 |
+
},
|
| 110 |
+
}
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def get_stock_ticker(query):
|
| 115 |
+
response = openai.ChatCompletion.create(
|
| 116 |
+
model="gpt-3.5-turbo",
|
| 117 |
+
temperature=0,
|
| 118 |
+
messages=[{
|
| 119 |
+
"role":"user",
|
| 120 |
+
"content":f"Given the user request, what is the comapany name and the company stock ticker ?: {query}?"
|
| 121 |
+
}],
|
| 122 |
+
functions=function,
|
| 123 |
+
function_call={"name": "get_company_Stock_ticker"},
|
| 124 |
+
)
|
| 125 |
+
message = response["choices"][0]["message"]
|
| 126 |
+
arguments = json.loads(message["function_call"]["arguments"])
|
| 127 |
+
company_name = arguments["company_name"]
|
| 128 |
+
company_ticker = arguments["ticker_symbol"]
|
| 129 |
+
return company_name,company_ticker
|
| 130 |
+
|
| 131 |
+
def Anazlyze_stock(query):
|
| 132 |
+
#agent.run(query) Outputs Company name, Ticker
|
| 133 |
+
Company_name,ticker=get_stock_ticker(query)
|
| 134 |
+
print({"Query":query,"Company_name":Company_name,"Ticker":ticker})
|
| 135 |
+
stock_data=get_stock_price(ticker,history=10)
|
| 136 |
+
stock_financials=get_financial_statements(ticker)
|
| 137 |
+
stock_news=get_recent_stock_news(Company_name)
|
| 138 |
+
|
| 139 |
+
available_information=f"Stock Price: {stock_data}\n\nStock Financials: {stock_financials}\n\nStock News: {stock_news}"
|
| 140 |
+
#available_information=f"Stock Financials: {stock_financials}\n\nStock News: {stock_news}"
|
| 141 |
+
|
| 142 |
+
# print("\n\nAnalyzing.....\n")
|
| 143 |
+
analysis=llm(f"Give detail stock analysis, Use the available data and provide investment recommendation. \
|
| 144 |
+
The user is fully aware about the investment risk, dont include any kind of warning like 'It is recommended to conduct further research and analysis or consult with a financial advisor before making an investment decision' in the answer \
|
| 145 |
+
User question: {query} \
|
| 146 |
+
You have the following information available about {Company_name}. Write (5-8) pointwise investment analysis to answer user query, At the end conclude with proper explaination.Try to Give positives and negatives : \
|
| 147 |
+
{available_information} "
|
| 148 |
+
)
|
| 149 |
+
# print(analysis)
|
| 150 |
+
|
| 151 |
+
return analysis
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Making tool list
|
| 156 |
+
tools=[
|
| 157 |
+
Tool(
|
| 158 |
+
name="get stock data",
|
| 159 |
+
func=get_stock_price,
|
| 160 |
+
description="Use when you are asked to evaluate or analyze a stock. This will output historic share price data. You should input the the stock ticker to it "
|
| 161 |
+
),
|
| 162 |
+
Tool(
|
| 163 |
+
name="DuckDuckGo Search",
|
| 164 |
+
func=search.run,
|
| 165 |
+
description="Use only when you need to get NSE/BSE stock ticker from internet, you can also get recent stock related news. Dont use it for any other analysis or task"
|
| 166 |
+
),
|
| 167 |
+
Tool(
|
| 168 |
+
name="get recent news",
|
| 169 |
+
func=get_recent_stock_news,
|
| 170 |
+
description="Use this to fetch recent news about stocks"
|
| 171 |
+
),
|
| 172 |
+
|
| 173 |
+
Tool(
|
| 174 |
+
name="get financial statements",
|
| 175 |
+
func=get_financial_statements,
|
| 176 |
+
description="Use this to get financial statement of the company. With the help of this data companys historic performance can be evaluaated. You should input stock ticker to it"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
]
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
agent = initialize_agent(
|
| 185 |
+
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, max_iterations=4,
|
| 186 |
+
handle_parsing_errors=True
|
| 187 |
+
)
|
| 188 |
+
#Adding predefine evaluation steps in the agent Prompt
|
| 189 |
+
|
| 190 |
+
new_prompt="""You are a financial advisor. Give stock recommendations for given query.
|
| 191 |
+
Everytime first you should identify the company name and get the stock ticker symbole for indian stock.
|
| 192 |
+
Answer the following questions as best you can. You have access to the following tools:
|
| 193 |
+
|
| 194 |
+
get stock data: Use when you are asked to evaluate or analyze a stock. This will output historic share price data. You should input the the stock ticker to it
|
| 195 |
+
DuckDuckGo Search: Use only when you need to get NSE/BSE stock ticker from internet, you can also get recent stock related news. Dont use it for any other analysis or task
|
| 196 |
+
get recent news: Use this to fetch recent news about stocks
|
| 197 |
+
get financial statements: Use this to get financial statement of the company. With the help of this data companys historic performance can be evaluaated. You should input stock ticker to it
|
| 198 |
+
|
| 199 |
+
steps-
|
| 200 |
+
Note- if you fail in satisfying any of the step below, Just move to next one
|
| 201 |
+
1) Get the company name and search for the "company name + NSE/BSE stock ticker" on internet. Dont hallucinate extract stock ticker as it is from the text. Output- stock ticker
|
| 202 |
+
2) Use "get stock data" tool to gather stock info. Output- Stock data
|
| 203 |
+
3) Get company's historic financial data using "get financial statements". Output- Financial statement
|
| 204 |
+
4) Use this "get recent news" tool to search for latest stock realted news. Output- Stock news
|
| 205 |
+
5) Analyze the stock based on gathered data and give detail analysis for investment choice. provide numbers and reasons to justify your answer. Output- Detailed stock Analysis
|
| 206 |
+
|
| 207 |
+
Use the following format:
|
| 208 |
+
|
| 209 |
+
Question: the input question you must answer
|
| 210 |
+
Thought: you should always think about what to do, Also try to follow steps mentioned above
|
| 211 |
+
Action: the action to take, should be one of [get stock data, DuckDuckGo Search, get recent news, get financial statements]
|
| 212 |
+
Action Input: the input to the action
|
| 213 |
+
Observation: the result of the action
|
| 214 |
+
... (this Thought/Action/Action Input/Observation can repeat N times)
|
| 215 |
+
Thought: I now know the final answer
|
| 216 |
+
Final Answer: the final answer to the original input question
|
| 217 |
+
Begin!
|
| 218 |
+
|
| 219 |
+
Question: {input}
|
| 220 |
+
Thought:{agent_scratchpad}"""
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
#Setting up new prompt
|
| 225 |
+
agent.agent.llm_chain.prompt.template=new_prompt
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
#App UI starts here
|
| 229 |
+
st.set_page_config(page_title="STOCK Analyzer", page_icon=":robot:")
|
| 230 |
+
st.header("STOCK Analyzer")
|
| 231 |
+
|
| 232 |
+
#Gets the user input
|
| 233 |
+
def get_text():
|
| 234 |
+
input_text = st.text_input("You:", "Is ITC stock a good investment choice right now? OR Shall I invest in Asian paints?.......")
|
| 235 |
+
if input_text.isalpha():
|
| 236 |
+
st.write(text, 'string', )
|
| 237 |
+
else:
|
| 238 |
+
st.write('Please type in a string Only')
|
| 239 |
+
return input_text
|
| 240 |
+
|
| 241 |
+
user_input=get_text()
|
| 242 |
+
response = agent(user_input)
|
| 243 |
+
|
| 244 |
+
submit = st.button('Generate')
|
| 245 |
+
|
| 246 |
+
#If generate button is clicked
|
| 247 |
+
if submit:
|
| 248 |
+
|
| 249 |
+
st.subheader("Answer:")
|
| 250 |
+
|
| 251 |
+
st.write(response)
|
| 252 |
+
|
| 253 |
+
|