Spaces:
Sleeping
Sleeping
Delete rag.py
Browse files
rag.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
from langchain.vectorstores import Chroma
|
2 |
-
from langchain.chat_models import ChatOllama
|
3 |
-
from langchain.embeddings import FastEmbedEmbeddings
|
4 |
-
from langchain.schema.output_parser import StrOutputParser
|
5 |
-
from langchain.document_loaders import PyPDFLoader
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.schema.runnable import RunnablePassthrough
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
from langchain.vectorstores.utils import filter_complex_metadata
|
10 |
-
#add new import
|
11 |
-
from langchain_community.document_loaders.csv_loader import CSVLoader
|
12 |
-
|
13 |
-
from sentence_transformers import SentenceTransformer
|
14 |
-
|
15 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
16 |
-
model_name = "sentence-transformers/all-mpnet-base-v2"
|
17 |
-
embedding = HuggingFaceEmbeddings(
|
18 |
-
model_name=model_name,
|
19 |
-
)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
class ChatPDF:
|
24 |
-
vector_store = None
|
25 |
-
retriever = None
|
26 |
-
chain = None
|
27 |
-
|
28 |
-
def __init__(self):
|
29 |
-
self.model = ChatOllama(model="mistral")
|
30 |
-
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=100)
|
31 |
-
self.prompt = PromptTemplate.from_template(
|
32 |
-
"""
|
33 |
-
<s> [INST] You are an assistant for question-answering tasks. Use only the following pieces of retrieved context
|
34 |
-
to build an answer for the user. If you don't know the answer, just say that you don't know. Use three sentences
|
35 |
-
maximum and keep the answer concise. [/INST] </s>
|
36 |
-
[INST] Question: {question}
|
37 |
-
Context: {context}
|
38 |
-
Answer: [/INST]
|
39 |
-
"""
|
40 |
-
)
|
41 |
-
|
42 |
-
def ingest(self, pdf_file_path: str):
|
43 |
-
docs = PyPDFLoader(file_path=pdf_file_path).load()
|
44 |
-
|
45 |
-
|
46 |
-
chunks = self.text_splitter.split_documents(docs)
|
47 |
-
chunks = filter_complex_metadata(chunks)
|
48 |
-
|
49 |
-
vector_store = Chroma.from_documents(documents=chunks, embedding=embedding)
|
50 |
-
self.retriever = vector_store.as_retriever(
|
51 |
-
search_type="similarity_score_threshold",
|
52 |
-
search_kwargs={
|
53 |
-
"k": 3,
|
54 |
-
"score_threshold": 0.5,
|
55 |
-
},
|
56 |
-
)
|
57 |
-
|
58 |
-
self.chain = ({"context": self.retriever, "question": RunnablePassthrough()}
|
59 |
-
| self.prompt
|
60 |
-
| self.model
|
61 |
-
| StrOutputParser())
|
62 |
-
|
63 |
-
def ask(self, query: str):
|
64 |
-
if not self.chain:
|
65 |
-
return "Please, add a PDF document first."
|
66 |
-
|
67 |
-
return self.chain.invoke(query)
|
68 |
-
|
69 |
-
def clear(self):
|
70 |
-
self.vector_store = None
|
71 |
-
self.retriever = None
|
72 |
-
self.chain = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|