Spaces:
Running
Running
File size: 2,422 Bytes
cd6ef49 90da03b 3a30d63 cd6ef49 dc23734 e5d5fca cd6ef49 eb2c646 cd6ef49 2588225 cd6ef49 3a30d63 cd6ef49 56285a8 9125212 cd6ef49 2b64efc cd6ef49 9bac66c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
import requests
import os
##Bloom
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def text_generate(prompt):
print(f"*****Inside TEXT_generate - Prompt is :{prompt}")
print(f"length of prompt is {len(prompt)}")
json_ = {"inputs": prompt,
"parameters":
{
"top_p": 0.9,
"temperature": 1.1,
"max_new_tokens": 250,
"return_full_text": True,
"do_sample":True,
},
"options":
{"use_cache": True,
"wait_for_model": True,
},}
response = requests.post(API_URL, headers=headers, json=json_)
print(f"Response is : {response}")
output = response.json()
print(f"output is : {output}")
output_tmp = output[0]['generated_text']
print(f"output_tmp is: {output_tmp}")
solution = output_tmp.split("\nQ:")[0]
print(f"Final response after splits is: {solution}")
if '\nOutput:' in solution:
final_solution = solution.split("\nOutput:")[0]
print(f"Response after removing output is: {final_solution}")
elif '\n\n' in solution:
final_solution = solution.split("\n\n")[0]
print(f"Response after removing new line entries is: {final_solution}")
else:
final_solution = solution
return final_solution
demo = gr.Blocks()
with demo:
gr.Markdown("<h1>Bloom Explorer</h1>")
gr.Markdown(
"""Exploration of the capabilities of the [BigScienceW Bloom](https://twitter.com/BigscienceW) large language model. Currently, due to size-limits on Prompt and Token generation, we are only able to feed very limited-length text as Prompt and are getting very few tokens generated in-turn. This makes it difficult to keep a tab on theme of text generation. This Space is created by [Samim](https://samim.io) for research and fun"""
)
with gr.Row():
input_prompt = gr.Textbox(label="Write text to prompt the model", value="Once upon a time in a land far away", lines=6)
with gr.Row():
generated_txt = gr.Textbox(lines=3)
b1 = gr.Button("Generate Text")
b1.click(text_generate,inputs=[input_prompt], outputs=generated_txt)
with gr.Row():
gr.Markdown("")
demo.launch(enable_queue=True, debug=True) |