Spaces:
Runtime error
Runtime error
File size: 58,681 Bytes
309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 309ae8a d00dc99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 |
import json
from pathlib import Path
from typing import Any, Union
import gradio as gr
import numpy as np
import torch
from safetensors import safe_open
from safetensors.torch import save_file
from config import get_path_config
from style_bert_vits2.constants import DEFAULT_STYLE, GRADIO_THEME
from style_bert_vits2.logging import logger
from style_bert_vits2.tts_model import TTSModel, TTSModelHolder
voice_keys = ["dec"]
voice_pitch_keys = ["flow"]
speech_style_keys = ["enc_p"]
tempo_keys = ["sdp", "dp"]
device = "cuda" if torch.cuda.is_available() else "cpu"
path_config = get_path_config()
assets_root = path_config.assets_root
def load_safetensors(model_path: Union[str, Path]) -> dict[str, torch.Tensor]:
result: dict[str, torch.Tensor] = {}
with safe_open(model_path, framework="pt", device="cpu") as f:
for k in f.keys():
result[k] = f.get_tensor(k)
return result
def load_config(model_name: str) -> dict[str, Any]:
with open(assets_root / model_name / "config.json", encoding="utf-8") as f:
config = json.load(f)
return config
def save_config(config: dict[str, Any], model_name: str):
with open(assets_root / model_name / "config.json", "w", encoding="utf-8") as f:
json.dump(config, f, indent=2, ensure_ascii=False)
def load_recipe(model_name: str) -> dict[str, Any]:
receipe_path = assets_root / model_name / "recipe.json"
if receipe_path.exists():
with open(receipe_path, encoding="utf-8") as f:
recipe = json.load(f)
else:
recipe = {}
return recipe
def save_recipe(recipe: dict[str, Any], model_name: str):
with open(assets_root / model_name / "recipe.json", "w", encoding="utf-8") as f:
json.dump(recipe, f, indent=2, ensure_ascii=False)
def load_style_vectors(model_name: str) -> np.ndarray:
return np.load(assets_root / model_name / "style_vectors.npy")
def save_style_vectors(style_vectors: np.ndarray, model_name: str):
np.save(assets_root / model_name / "style_vectors.npy", style_vectors)
def merge_style_usual(
model_name_a: str,
model_name_b: str,
weight: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
) -> list[str]:
"""
new = (1 - weight) * A + weight * B
style_triple_list: list[(model_aでのスタイル名, model_bでのスタイル名, 出力するスタイル名)]
"""
style_vectors_a = load_style_vectors(model_name_a)
style_vectors_b = load_style_vectors(model_name_b)
config_a = load_config(model_name_a)
config_b = load_config(model_name_b)
style2id_a = config_a["data"]["style2id"]
style2id_b = config_b["data"]["style2id"]
new_style_vecs = []
new_style2id = {}
for style_a, style_b, style_out in style_tuple_list:
if style_a not in style2id_a:
logger.error(f"{style_a} is not in {model_name_a}.")
raise ValueError(f"{style_a} は {model_name_a} にありません。")
if style_b not in style2id_b:
logger.error(f"{style_b} is not in {model_name_b}.")
raise ValueError(f"{style_b} は {model_name_b} にありません。")
new_style = (
style_vectors_a[style2id_a[style_a]] * (1 - weight)
+ style_vectors_b[style2id_b[style_b]] * weight
)
new_style_vecs.append(new_style)
new_style2id[style_out] = len(new_style_vecs) - 1
new_style_vecs = np.array(new_style_vecs)
save_style_vectors(new_style_vecs, output_name)
new_config = config_a.copy()
new_config["data"]["num_styles"] = len(new_style2id)
new_config["data"]["style2id"] = new_style2id
new_config["model_name"] = output_name
save_config(new_config, output_name)
receipe = load_recipe(output_name)
receipe["style_tuple_list"] = style_tuple_list
save_recipe(receipe, output_name)
return list(new_style2id.keys())
def merge_style_add_diff(
model_name_a: str,
model_name_b: str,
model_name_c: str,
weight: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
) -> list[str]:
"""
new = A + weight * (B - C)
style_tuple_list: list[(model_aでのスタイル名, model_bでのスタイル名, model_cでのスタイル名, 出力するスタイル名)]
"""
style_vectors_a = load_style_vectors(model_name_a)
style_vectors_b = load_style_vectors(model_name_b)
style_vectors_c = load_style_vectors(model_name_c)
config_a = load_config(model_name_a)
config_b = load_config(model_name_b)
config_c = load_config(model_name_c)
style2id_a = config_a["data"]["style2id"]
style2id_b = config_b["data"]["style2id"]
style2id_c = config_c["data"]["style2id"]
new_style_vecs = []
new_style2id = {}
for style_a, style_b, style_c, style_out in style_tuple_list:
if style_a not in style2id_a:
logger.error(f"{style_a} is not in {model_name_a}.")
raise ValueError(f"{style_a} は {model_name_a} にありません。")
if style_b not in style2id_b:
logger.error(f"{style_b} is not in {model_name_b}.")
raise ValueError(f"{style_b} は {model_name_b} にありません。")
if style_c not in style2id_c:
logger.error(f"{style_c} is not in {model_name_c}.")
raise ValueError(f"{style_c} は {model_name_c} にありません。")
new_style = style_vectors_a[style2id_a[style_a]] + weight * (
style_vectors_b[style2id_b[style_b]] - style_vectors_c[style2id_c[style_c]]
)
new_style_vecs.append(new_style)
new_style2id[style_out] = len(new_style_vecs) - 1
new_style_vecs = np.array(new_style_vecs)
save_style_vectors(new_style_vecs, output_name)
new_config = config_a.copy()
new_config["data"]["num_styles"] = len(new_style2id)
new_config["data"]["style2id"] = new_style2id
new_config["model_name"] = output_name
save_config(new_config, output_name)
receipe = load_recipe(output_name)
receipe["style_tuple_list"] = style_tuple_list
save_recipe(receipe, output_name)
return list(new_style2id.keys())
def merge_style_weighted_sum(
model_name_a: str,
model_name_b: str,
model_name_c: str,
model_a_coeff: float,
model_b_coeff: float,
model_c_coeff: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
) -> list[str]:
"""
new = A * model_a_coeff + B * model_b_coeff + C * model_c_coeff
style_tuple_list: list[(model_aでのスタイル名, model_bでのスタイル名, model_cでのスタイル名, 出力するスタイル名)]
"""
style_vectors_a = load_style_vectors(model_name_a)
style_vectors_b = load_style_vectors(model_name_b)
style_vectors_c = load_style_vectors(model_name_c)
config_a = load_config(model_name_a)
config_b = load_config(model_name_b)
config_c = load_config(model_name_c)
style2id_a = config_a["data"]["style2id"]
style2id_b = config_b["data"]["style2id"]
style2id_c = config_c["data"]["style2id"]
new_style_vecs = []
new_style2id = {}
for style_a, style_b, style_c, style_out in style_tuple_list:
if style_a not in style2id_a:
logger.error(f"{style_a} is not in {model_name_a}.")
raise ValueError(f"{style_a} は {model_name_a} にありません。")
if style_b not in style2id_b:
logger.error(f"{style_b} is not in {model_name_b}.")
raise ValueError(f"{style_b} は {model_name_b} にありません。")
if style_c not in style2id_c:
logger.error(f"{style_c} is not in {model_name_c}.")
raise ValueError(f"{style_c} は {model_name_c} にありません。")
new_style = (
style_vectors_a[style2id_a[style_a]] * model_a_coeff
+ style_vectors_b[style2id_b[style_b]] * model_b_coeff
+ style_vectors_c[style2id_c[style_c]] * model_c_coeff
)
new_style_vecs.append(new_style)
new_style2id[style_out] = len(new_style_vecs) - 1
new_style_vecs = np.array(new_style_vecs)
save_style_vectors(new_style_vecs, output_name)
new_config = config_a.copy()
new_config["data"]["num_styles"] = len(new_style2id)
new_config["data"]["style2id"] = new_style2id
new_config["model_name"] = output_name
save_config(new_config, output_name)
receipe = load_recipe(output_name)
receipe["style_tuple_list"] = style_tuple_list
save_recipe(receipe, output_name)
return list(new_style2id.keys())
def merge_style_add_null(
model_name_a: str,
model_name_b: str,
weight: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
) -> list[str]:
"""
new = A + weight * B
style_tuple_list: list[(model_aでのスタイル名, model_bでのスタイル名, 出力するスタイル名)]
"""
style_vectors_a = load_style_vectors(model_name_a)
style_vectors_b = load_style_vectors(model_name_b)
config_a = load_config(model_name_a)
config_b = load_config(model_name_b)
style2id_a = config_a["data"]["style2id"]
style2id_b = config_b["data"]["style2id"]
new_style_vecs = []
new_style2id = {}
for style_a, style_b, style_out in style_tuple_list:
if style_a not in style2id_a:
logger.error(f"{style_a} is not in {model_name_a}.")
raise ValueError(f"{style_a} は {model_name_a} にありません。")
if style_b not in style2id_b:
logger.error(f"{style_b} is not in {model_name_b}.")
raise ValueError(f"{style_b} は {model_name_b} にありません。")
new_style = (
style_vectors_a[style2id_a[style_a]]
+ weight * style_vectors_b[style2id_b[style_b]]
)
new_style_vecs.append(new_style)
new_style2id[style_out] = len(new_style_vecs) - 1
new_style_vecs = np.array(new_style_vecs)
save_style_vectors(new_style_vecs, output_name)
new_config = config_a.copy()
new_config["data"]["num_styles"] = len(new_style2id)
new_config["data"]["style2id"] = new_style2id
new_config["model_name"] = output_name
save_config(new_config, output_name)
receipe = load_recipe(output_name)
receipe["style_tuple_list"] = style_tuple_list
save_recipe(receipe, output_name)
return list(new_style2id.keys())
def lerp_tensors(t: float, v0: torch.Tensor, v1: torch.Tensor):
return v0 * (1 - t) + v1 * t
def slerp_tensors(
t: float, v0: torch.Tensor, v1: torch.Tensor, dot_thres: float = 0.998
):
device = v0.device
v0c = v0.cpu().numpy()
v1c = v1.cpu().numpy()
dot = np.sum(v0c * v1c / (np.linalg.norm(v0c) * np.linalg.norm(v1c)))
if abs(dot) > dot_thres:
return lerp_tensors(t, v0, v1)
th0 = np.arccos(dot)
sin_th0 = np.sin(th0)
th_t = th0 * t
return torch.from_numpy(
v0c * np.sin(th0 - th_t) / sin_th0 + v1c * np.sin(th_t) / sin_th0
).to(device)
def merge_models_usual(
model_path_a: str,
model_path_b: str,
voice_weight: float,
voice_pitch_weight: float,
speech_style_weight: float,
tempo_weight: float,
output_name: str,
use_slerp_instead_of_lerp: bool,
):
"""
new = (1 - weight) * A + weight * B
"""
model_a_weight = load_safetensors(model_path_a)
model_b_weight = load_safetensors(model_path_b)
merged_model_weight = model_a_weight.copy()
for key in model_a_weight:
if any([key.startswith(prefix) for prefix in voice_keys]):
weight = voice_weight
elif any([key.startswith(prefix) for prefix in voice_pitch_keys]):
weight = voice_pitch_weight
elif any([key.startswith(prefix) for prefix in speech_style_keys]):
weight = speech_style_weight
elif any([key.startswith(prefix) for prefix in tempo_keys]):
weight = tempo_weight
else:
continue
merged_model_weight[key] = (
slerp_tensors if use_slerp_instead_of_lerp else lerp_tensors
)(weight, model_a_weight[key], model_b_weight[key])
merged_model_path = assets_root / output_name / f"{output_name}.safetensors"
merged_model_path.parent.mkdir(parents=True, exist_ok=True)
save_file(merged_model_weight, merged_model_path)
receipe = {
"method": "usual",
"model_a": model_path_a,
"model_b": model_path_b,
"voice_weight": voice_weight,
"voice_pitch_weight": voice_pitch_weight,
"speech_style_weight": speech_style_weight,
"tempo_weight": tempo_weight,
"use_slerp_instead_of_lerp": use_slerp_instead_of_lerp,
}
save_recipe(receipe, output_name)
# Merge default Neutral style vectors and save
model_name_a = Path(model_path_a).parent.name
model_name_b = Path(model_path_b).parent.name
style_vectors_a = load_style_vectors(model_name_a)
style_vectors_b = load_style_vectors(model_name_b)
new_config = load_config(model_name_a)
new_config["model_name"] = output_name
new_config["data"]["num_styles"] = 1
new_config["data"]["style2id"] = {DEFAULT_STYLE: 0}
save_config(new_config, output_name)
neutral_vector_a = style_vectors_a[0]
neutral_vector_b = style_vectors_b[0]
weight = speech_style_weight
new_neutral_vector = (1 - weight) * neutral_vector_a + weight * neutral_vector_b
new_style_vectors = np.array([new_neutral_vector])
save_style_vectors(new_style_vectors, output_name)
return merged_model_path
def merge_models_add_diff(
model_path_a: str,
model_path_b: str,
model_path_c: str,
voice_weight: float,
voice_pitch_weight: float,
speech_style_weight: float,
tempo_weight: float,
output_name: str,
):
"""
new = A + weight * (B - C)
"""
model_a_weight = load_safetensors(model_path_a)
model_b_weight = load_safetensors(model_path_b)
model_c_weight = load_safetensors(model_path_c)
merged_model_weight = model_a_weight.copy()
for key in model_a_weight:
if any([key.startswith(prefix) for prefix in voice_keys]):
weight = voice_weight
elif any([key.startswith(prefix) for prefix in voice_pitch_keys]):
weight = voice_pitch_weight
elif any([key.startswith(prefix) for prefix in speech_style_keys]):
weight = speech_style_weight
elif any([key.startswith(prefix) for prefix in tempo_keys]):
weight = tempo_weight
else:
continue
merged_model_weight[key] = model_a_weight[key] + weight * (
model_b_weight[key] - model_c_weight[key]
)
merged_model_path = assets_root / output_name / f"{output_name}.safetensors"
merged_model_path.parent.mkdir(parents=True, exist_ok=True)
save_file(merged_model_weight, merged_model_path)
info = {
"method": "add_diff",
"model_a": model_path_a,
"model_b": model_path_b,
"model_c": model_path_c,
"voice_weight": voice_weight,
"voice_pitch_weight": voice_pitch_weight,
"speech_style_weight": speech_style_weight,
"tempo_weight": tempo_weight,
}
with open(assets_root / output_name / "recipe.json", "w", encoding="utf-8") as f:
json.dump(info, f, indent=2, ensure_ascii=False)
# Default style merge only using Neutral style
model_name_a = Path(model_path_a).parent.name
model_name_b = Path(model_path_b).parent.name
model_name_c = Path(model_path_c).parent.name
style_vectors_a = np.load(
assets_root / model_name_a / "style_vectors.npy"
) # (style_num_a, 256)
style_vectors_b = np.load(
assets_root / model_name_b / "style_vectors.npy"
) # (style_num_b, 256)
style_vectors_c = np.load(
assets_root / model_name_c / "style_vectors.npy"
) # (style_num_c, 256)
with open(assets_root / model_name_a / "config.json", encoding="utf-8") as f:
new_config = json.load(f)
new_config["model_name"] = output_name
new_config["data"]["num_styles"] = 1
new_config["data"]["style2id"] = {DEFAULT_STYLE: 0}
with open(assets_root / output_name / "config.json", "w", encoding="utf-8") as f:
json.dump(new_config, f, indent=2, ensure_ascii=False)
neutral_vector_a = style_vectors_a[0]
neutral_vector_b = style_vectors_b[0]
neutral_vector_c = style_vectors_c[0]
weight = speech_style_weight
new_neutral_vector = neutral_vector_a + weight * (
neutral_vector_b - neutral_vector_c
)
new_style_vectors = np.array([new_neutral_vector])
new_style_path = assets_root / output_name / "style_vectors.npy"
np.save(new_style_path, new_style_vectors)
return merged_model_path
def merge_models_weighted_sum(
model_path_a: str,
model_path_b: str,
model_path_c: str,
model_a_coeff: float,
model_b_coeff: float,
model_c_coeff: float,
output_name: str,
):
model_a_weight = load_safetensors(model_path_a)
model_b_weight = load_safetensors(model_path_b)
model_c_weight = load_safetensors(model_path_c)
merged_model_weight = model_a_weight.copy()
for key in model_a_weight:
merged_model_weight[key] = (
model_a_coeff * model_a_weight[key]
+ model_b_coeff * model_b_weight[key]
+ model_c_coeff * model_c_weight[key]
)
merged_model_path = assets_root / output_name / f"{output_name}.safetensors"
merged_model_path.parent.mkdir(parents=True, exist_ok=True)
save_file(merged_model_weight, merged_model_path)
info = {
"method": "weighted_sum",
"model_a": model_path_a,
"model_b": model_path_b,
"model_c": model_path_c,
"model_a_coeff": model_a_coeff,
"model_b_coeff": model_b_coeff,
"model_c_coeff": model_c_coeff,
}
with open(assets_root / output_name / "recipe.json", "w", encoding="utf-8") as f:
json.dump(info, f, indent=2, ensure_ascii=False)
# Default style merge only using Neutral style
model_name_a = Path(model_path_a).parent.name
model_name_b = Path(model_path_b).parent.name
model_name_c = Path(model_path_c).parent.name
style_vectors_a = np.load(
assets_root / model_name_a / "style_vectors.npy"
) # (style_num_a, 256)
style_vectors_b = np.load(
assets_root / model_name_b / "style_vectors.npy"
) # (style_num_b, 256)
style_vectors_c = np.load(
assets_root / model_name_c / "style_vectors.npy"
) # (style_num_c, 256)
with open(assets_root / model_name_a / "config.json", encoding="utf-8") as f:
new_config = json.load(f)
new_config["model_name"] = output_name
new_config["data"]["num_styles"] = 1
new_config["data"]["style2id"] = {DEFAULT_STYLE: 0}
with open(assets_root / output_name / "config.json", "w", encoding="utf-8") as f:
json.dump(new_config, f, indent=2, ensure_ascii=False)
neutral_vector_a = style_vectors_a[0]
neutral_vector_b = style_vectors_b[0]
neutral_vector_c = style_vectors_c[0]
new_neutral_vector = (
model_a_coeff * neutral_vector_a
+ model_b_coeff * neutral_vector_b
+ model_c_coeff * neutral_vector_c
)
new_style_vectors = np.array([new_neutral_vector])
new_style_path = assets_root / output_name / "style_vectors.npy"
np.save(new_style_path, new_style_vectors)
return merged_model_path
def merge_models_add_null(
model_path_a: str,
model_path_b: str,
voice_weight: float,
voice_pitch_weight: float,
speech_style_weight: float,
tempo_weight: float,
output_name: str,
):
model_a_weight = load_safetensors(model_path_a)
model_b_weight = load_safetensors(model_path_b)
merged_model_weight = model_a_weight.copy()
for key in model_a_weight:
if any([key.startswith(prefix) for prefix in voice_keys]):
weight = voice_weight
elif any([key.startswith(prefix) for prefix in voice_pitch_keys]):
weight = voice_pitch_weight
elif any([key.startswith(prefix) for prefix in speech_style_keys]):
weight = speech_style_weight
elif any([key.startswith(prefix) for prefix in tempo_keys]):
weight = tempo_weight
else:
continue
merged_model_weight[key] = model_a_weight[key] + weight * model_b_weight[key]
merged_model_path = assets_root / output_name / f"{output_name}.safetensors"
merged_model_path.parent.mkdir(parents=True, exist_ok=True)
save_file(merged_model_weight, merged_model_path)
info = {
"method": "add_null",
"model_a": model_path_a,
"model_b": model_path_b,
"voice_weight": voice_weight,
"voice_pitch_weight": voice_pitch_weight,
"speech_style_weight": speech_style_weight,
"tempo_weight": tempo_weight,
}
with open(assets_root / output_name / "recipe.json", "w", encoding="utf-8") as f:
json.dump(info, f, indent=2, ensure_ascii=False)
# Default style merge only using Neutral style
model_name_a = Path(model_path_a).parent.name
model_name_b = Path(model_path_b).parent.name
style_vectors_a = np.load(
assets_root / model_name_a / "style_vectors.npy"
) # (style_num_a, 256)
style_vectors_b = np.load(
assets_root / model_name_b / "style_vectors.npy"
) # (style_num_b, 256)
with open(assets_root / model_name_a / "config.json", encoding="utf-8") as f:
new_config = json.load(f)
new_config["model_name"] = output_name
new_config["data"]["num_styles"] = 1
new_config["data"]["style2id"] = {DEFAULT_STYLE: 0}
with open(assets_root / output_name / "config.json", "w", encoding="utf-8") as f:
json.dump(new_config, f, indent=2, ensure_ascii=False)
neutral_vector_a = style_vectors_a[0]
neutral_vector_b = style_vectors_b[0]
weight = speech_style_weight
new_neutral_vector = neutral_vector_a + weight * neutral_vector_b
new_style_vectors = np.array([new_neutral_vector])
new_style_path = assets_root / output_name / "style_vectors.npy"
np.save(new_style_path, new_style_vectors)
return merged_model_path
def merge_models_gr(
model_path_a: str,
model_path_b: str,
model_path_c: str,
model_a_coeff: float,
model_b_coeff: float,
model_c_coeff: float,
method: str,
output_name: str,
voice_weight: float,
voice_pitch_weight: float,
speech_style_weight: float,
tempo_weight: float,
use_slerp_instead_of_lerp: bool,
):
if output_name == "":
return "Error: 新しいモデル名を入力してください。"
assert method in [
"usual",
"add_diff",
"weighted_sum",
"add_null",
], f"Invalid method: {method}"
model_a_name = Path(model_path_a).parent.name
model_b_name = Path(model_path_b).parent.name
model_c_name = Path(model_path_c).parent.name
if method == "usual":
if output_name in [model_a_name, model_b_name]:
return "Error: マージ元のモデル名と同じ名前は使用できません。", None
merged_model_path = merge_models_usual(
model_path_a,
model_path_b,
voice_weight,
voice_pitch_weight,
speech_style_weight,
tempo_weight,
output_name,
use_slerp_instead_of_lerp,
)
elif method == "add_diff":
if output_name in [model_a_name, model_b_name, model_c_name]:
return "Error: マージ元のモデル名と同じ名前は使用できません。", None
merged_model_path = merge_models_add_diff(
model_path_a,
model_path_b,
model_path_c,
voice_weight,
voice_pitch_weight,
speech_style_weight,
tempo_weight,
output_name,
)
elif method == "weighted_sum":
if output_name in [model_a_name, model_b_name, model_c_name]:
return "Error: マージ元のモデル名と同じ名前は使用できません。", None
merged_model_path = merge_models_weighted_sum(
model_path_a,
model_path_b,
model_path_c,
model_a_coeff,
model_b_coeff,
model_c_coeff,
output_name,
)
else: # add_null
if output_name in [model_a_name, model_b_name]:
return "Error: マージ元のモデル名と同じ名前は使用できません。", None
merged_model_path = merge_models_add_null(
model_path_a,
model_path_b,
voice_weight,
voice_pitch_weight,
speech_style_weight,
tempo_weight,
output_name,
)
return f"Success: モデルを{merged_model_path}に保存しました。", gr.Dropdown(
choices=[DEFAULT_STYLE], value=DEFAULT_STYLE
)
def merge_style_usual_gr(
model_name_a: str,
model_name_b: str,
weight: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
):
if output_name == "":
return "Error: 新しいモデル名を入力してください。", None
new_styles = merge_style_usual(
model_name_a,
model_name_b,
weight,
output_name,
style_tuple_list,
)
return f"Success: {output_name}のスタイルを保存しました。", gr.Dropdown(
choices=new_styles, value=new_styles[0]
)
def merge_style_add_diff_gr(
model_name_a: str,
model_name_b: str,
model_name_c: str,
weight: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
):
if output_name == "":
return "Error: 新しいモデル名を入力してください。", None
new_styles = merge_style_add_diff(
model_name_a,
model_name_b,
model_name_c,
weight,
output_name,
style_tuple_list,
)
return f"Success: {output_name}のスタイルを保存しました。", gr.Dropdown(
choices=new_styles, value=new_styles[0]
)
def merge_style_weighted_sum_gr(
model_name_a: str,
model_name_b: str,
model_name_c: str,
model_a_coeff: float,
model_b_coeff: float,
model_c_coeff: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
):
if output_name == "":
return "Error: 新しいモデル名を入力してください。", None
new_styles = merge_style_weighted_sum(
model_name_a,
model_name_b,
model_name_c,
model_a_coeff,
model_b_coeff,
model_c_coeff,
output_name,
style_tuple_list,
)
return f"Success: {output_name}のスタイルを保存しました。", gr.Dropdown(
choices=new_styles, value=new_styles[0]
)
def merge_style_add_null_gr(
model_name_a: str,
model_name_b: str,
weight: float,
output_name: str,
style_tuple_list: list[tuple[str, ...]],
):
if output_name == "":
return "Error: 新しいモデル名を入力してください。", None
new_styles = merge_style_add_null(
model_name_a,
model_name_b,
weight,
output_name,
style_tuple_list,
)
return f"Success: {output_name}のスタイルを保存しました。", gr.Dropdown(
choices=new_styles, value=new_styles[0]
)
def simple_tts(
model_name: str, text: str, style: str = DEFAULT_STYLE, style_weight: float = 1.0
):
if model_name == "":
return "Error: モデル名を入力してください。", None
model_path = assets_root / model_name / f"{model_name}.safetensors"
config_path = assets_root / model_name / "config.json"
style_vec_path = assets_root / model_name / "style_vectors.npy"
model = TTSModel(model_path, config_path, style_vec_path, device)
return (
"Success: 音声を生成しました。",
model.infer(text, style=style, style_weight=style_weight),
)
def update_three_model_names_dropdown(model_holder: TTSModelHolder):
new_names, new_files, _ = model_holder.update_model_names_for_gradio()
return new_names, new_files, new_names, new_files, new_names, new_files
def get_styles(model_name: str):
config_path = assets_root / model_name / "config.json"
with open(config_path, encoding="utf-8") as f:
config = json.load(f)
styles = list(config["data"]["style2id"].keys())
return styles
def get_triple_styles(model_name_a: str, model_name_b: str, model_name_c: str):
return get_styles(model_name_a), get_styles(model_name_b), get_styles(model_name_c)
def load_styles_gr(model_name_a: str, model_name_b: str):
config_path_a = assets_root / model_name_a / "config.json"
with open(config_path_a, encoding="utf-8") as f:
config_a = json.load(f)
styles_a = list(config_a["data"]["style2id"].keys())
config_path_b = assets_root / model_name_b / "config.json"
with open(config_path_b, encoding="utf-8") as f:
config_b = json.load(f)
styles_b = list(config_b["data"]["style2id"].keys())
return (
gr.Textbox(value=", ".join(styles_a)),
gr.Textbox(value=", ".join(styles_b)),
gr.TextArea(
label="スタイルのマージリスト",
placeholder=f"{DEFAULT_STYLE}, {DEFAULT_STYLE},{DEFAULT_STYLE}\nAngry, Angry, Angry",
value="\n".join(
f"{sty_a}, {sty_b}, {sty_a if sty_a != sty_b else ''}{sty_b}"
for sty_a in styles_a
for sty_b in styles_b
),
),
)
initial_md = """
## 使い方
### マージ方法の選択
マージの方法には4つの方法があります。
- 通常のマージ `new = (1 - weight) * A + weight * B`: AとBのモデルを指定して、要素ごとに比率を指定して混ぜる
- 単純にAとBの二人の話し方や声音を混ぜたいとき
- 差分マージ `new = A + weight * (B - C)`: AとBとCのモデルを指定して、「Bの要素からCの要素を引いたもの」をAに足す
- 例えば、Bが「Cと同じ人だけど囁いているモデル」とすると、`B - C`は「囁きを表すベクトル」だと思えるので、それをAに足すことで、Aの声のままで囁き声を出すモデルができたりする
- 他にも活用例はいろいろありそう
- 重み付き和 `new = a * A + b * B + c * C`: AとBとCのモデルを指定して、各モデルの係数を指定して混ぜる
- 例えば`new = A - B` としておくと、結果としてできたモデルを別のモデルと「ヌルモデルの加算」で使うことで、差分マージが実現できる
- 他にも何らかの活用法があるかもしれない
- ヌルモデルの加算 `new = A + weight * B`: AとBのモデルを指定して、Bのモデルに要素ごとに比率をかけたものをAに足す
- Bのモデルは重み付き和などで `C - D` などとして作っている場合を想定している
- 他にも何らかの活用法があるかもしれない
### マージの手順
1. マージ元のモデルたちを選択(`model_assets`フォルダの中から選ばれます)
2. マージ後のモデルの名前を入力
3. 指示に従って重みや係数を入力
4. 「モデルファイルのマージ」ボタンを押す (safetensorsファイルがマージされる)
5. 結果を簡易音声合成で確認
6. 必要に応じてスタイルベクトルのマージを行う
以上でマージは完了で、`model_assets/マージ後のモデル名`にマージ後のモデルが保存され、音声合成のときに使えます。
また`model_asses/マージ後のモデル名/recipe.json`には、マージの配合レシピが記録されます(推論にはいらないので配合メモ用です)。
一番下にマージしたモデルによる簡易的な音声合成機能もつけています。
## 注意
- 1.x系と2.x-JP-Extraのモデルマージは失敗するようです。
- 話者数が違うモデル同士はおそらくマージできません。
"""
style_merge_md = f"""
## 3. スタイルベクトルのマージ
1. マージ後のモデルにいくつスタイルを追加したいかを「作りたいスタイル数」で指定
2. マージ前のモデルのスタイルを「各モデルのスタイルを取得」ボタンで取得
3. どのスタイルたちから新しいスタイルを作るかを下の欄で入力
4. 「スタイルのマージ」をクリック
### スタイルベクトルの混ぜられ方
- 構造上の相性の関係で、スタイルベクトルを混ぜる重みは、加重和以外の場合は、上の「話し方」と同じ比率で混ぜられます。例えば「話し方」が0のときはモデルAのみしか使われません。
- 加重和の場合は、AとBとCの係数によって混ぜられます。
"""
usual_md = """
`weight` を下の各スライダーで定める数値とすると、各要素ごとに、
```
new_model = (1 - weight) * A + weight * B
```
としてマージされます。
つまり、`weight = 0` のときはモデルA、`weight = 1` のときはモデルBになります。
"""
add_diff_md = """
`weight` を下の各スライダーで定める数値とすると、各要素ごとに、
```
new_model = A + weight * (B - C)
```
としてマージされます。
通常のマージと違い、**重みを1にしてもAの要素はそのまま保たれます**。
"""
weighted_sum_md = """
モデルの係数をそれぞれ `a`, `b`, `c` とすると、 **全要素に対して**、
```
new_model = a * A + b * B + c * C
```
としてマージされます。
## TIPS
- A, B, C が全て通常モデルで、通常モデルを作りたい場合は、`a + b + c = 1`となるようにするのがよいと思います。
- `a + b + c = 0` とすると(たとえば `A - B`)、話者性を持たないヌルモデルを作ることができ、「ヌルモデルとの和」で結果を使うことが出来ます(差分マージの材料などに)
- 他にも、`a = 0.5, b = c = 0`などでモデルAを謎に小さくしたり大きくしたり負にしたりできるので、実験に使ってください。
"""
add_null_md = """
「ヌルモデル」を、いくつかのモデルの加重和であってその係数の和が0であるようなものとします(例えば `C - D` など)。
そうして作ったヌルモデルBと通常モデルAに対して、`weight` を下の各スライダーで定める数値とすると、各要素ごとに、
```
new_model = A + weight * B
```
としてマージされます。
通常のマージと違い、**重みを1にしてもAの要素はそのまま保たれます**。
実際にはヌルモデルでないBに対しても使えますが、その場合はおそらく音声が正常に生成されないモデルができる気がします。が、もしかしたら何かに使えるかもしれません。
囁きについて実験的に作ったヌルモデルを[こちら](https://huggingface.co/litagin/sbv2_null_models)に置いています。これを `B` に使うことで、任意のモデルを囁きモデルにある程度は変換できます。
"""
tts_md = f"""
## 2. 結果のテスト
マージ後のモデルで音声合成を行います。ただし、デフォルトではスタイルは`{DEFAULT_STYLE}`しか使えないので、他のスタイルを使いたい場合は、下の「スタイルベクトルのマージ」を行ってください。
"""
def method_change(x: str):
assert x in [
"usual",
"add_diff",
"weighted_sum",
"add_null",
], f"Invalid method: {x}"
# model_desc, c_col, model_a_coeff, model_b_coeff, model_c_coeff, weight_row, use_slerp_instead_of_lerp
if x == "usual":
return (
gr.Markdown(usual_md),
gr.Column(visible=False),
gr.Number(visible=False),
gr.Number(visible=False),
gr.Number(visible=False),
gr.Row(visible=True),
gr.Checkbox(visible=True),
)
elif x == "add_diff":
return (
gr.Markdown(add_diff_md),
gr.Column(visible=True),
gr.Number(visible=False),
gr.Number(visible=False),
gr.Number(visible=False),
gr.Row(visible=True),
gr.Checkbox(visible=False),
)
elif x == "add_null":
return (
gr.Markdown(add_null_md),
gr.Column(visible=False),
gr.Number(visible=False),
gr.Number(visible=False),
gr.Number(visible=False),
gr.Row(visible=True),
gr.Checkbox(visible=False),
)
else: # weighted_sum
return (
gr.Markdown(weighted_sum_md),
gr.Column(visible=True),
gr.Number(visible=True),
gr.Number(visible=True),
gr.Number(visible=True),
gr.Row(visible=False),
gr.Checkbox(visible=False),
)
def create_merge_app(model_holder: TTSModelHolder) -> gr.Blocks:
model_names = model_holder.model_names
if len(model_names) == 0:
logger.error(
f"モデルが見つかりませんでした。{assets_root}にモデルを置いてください。"
)
with gr.Blocks() as app:
gr.Markdown(
f"Error: モデルが見つかりませんでした。{assets_root}にモデルを置いてください。"
)
return app
initial_id = 0
initial_model_files = [
str(f) for f in model_holder.model_files_dict[model_names[initial_id]]
]
with gr.Blocks(theme=GRADIO_THEME) as app:
gr.Markdown(
"複数のStyle-Bert-VITS2モデルから、声質・話し方・話す速さを取り替えたり混ぜたり引いたりして新しいモデルを作成できます。"
)
with gr.Accordion(label="使い方", open=False):
gr.Markdown(initial_md)
method = gr.Radio(
label="マージ方法",
choices=[
("通常マージ", "usual"),
("差分マージ", "add_diff"),
("加重和", "weighted_sum"),
("ヌルモデルマージ", "add_null"),
],
value="usual",
)
with gr.Row():
with gr.Column(scale=3):
model_name_a = gr.Dropdown(
label="モデルA",
choices=model_names,
value=model_names[initial_id],
)
model_path_a = gr.Dropdown(
label="モデルファイル",
choices=initial_model_files,
value=initial_model_files[0],
)
model_a_coeff = gr.Number(
label="モデルAの係数",
value=1.0,
step=0.1,
visible=False,
)
with gr.Column(scale=3):
model_name_b = gr.Dropdown(
label="モデルB",
choices=model_names,
value=model_names[initial_id],
)
model_path_b = gr.Dropdown(
label="モデルファイル",
choices=initial_model_files,
value=initial_model_files[0],
)
model_b_coeff = gr.Number(
label="モデルBの係数",
value=-1.0,
step=0.1,
visible=False,
)
with gr.Column(scale=3, visible=False) as c_col:
model_name_c = gr.Dropdown(
label="モデルC",
choices=model_names,
value=model_names[initial_id],
)
model_path_c = gr.Dropdown(
label="モデルファイル",
choices=initial_model_files,
value=initial_model_files[0],
)
model_c_coeff = gr.Number(
label="モデルCの係数",
value=0.0,
step=0.1,
visible=False,
)
refresh_button = gr.Button("更新", scale=1, visible=True)
method_desc = gr.Markdown(usual_md)
with gr.Column(variant="panel"):
new_name = gr.Textbox(label="新しいモデル名", placeholder="new_model")
with gr.Row() as weight_row:
voice_slider = gr.Slider(
label="声質",
value=0,
minimum=0,
maximum=1,
step=0.1,
)
voice_pitch_slider = gr.Slider(
label="声の高さ",
value=0,
minimum=0,
maximum=1,
step=0.1,
)
speech_style_slider = gr.Slider(
label="話し方(抑揚・感情表現等)",
value=0,
minimum=0,
maximum=1,
step=0.1,
)
tempo_slider = gr.Slider(
label="話す速さ・リズム・テンポ",
value=0,
minimum=0,
maximum=1,
step=0.1,
)
use_slerp_instead_of_lerp = gr.Checkbox(
label="線形補完のかわりに球面線形補完を使う",
value=False,
visible=True,
)
with gr.Column(variant="panel"):
gr.Markdown("## 1. モデルファイル (safetensors) のマージ")
with gr.Row():
model_merge_button = gr.Button(
"モデルファイルのマージ", variant="primary"
)
info_model_merge = gr.Textbox(label="情報")
with gr.Column(variant="panel"):
gr.Markdown(tts_md)
text_input = gr.TextArea(
label="テキスト", value="これはテストです。聞こえていますか?"
)
with gr.Row():
with gr.Column():
style = gr.Dropdown(
label="スタイル",
choices=[DEFAULT_STYLE],
value=DEFAULT_STYLE,
)
emotion_weight = gr.Slider(
minimum=0,
maximum=50,
value=1,
step=0.1,
label="スタイルの強さ",
)
tts_button = gr.Button("音声合成", variant="primary")
tts_info = gr.Textbox(label="情報")
audio_output = gr.Audio(label="結果")
with gr.Column(variant="panel"):
gr.Markdown(style_merge_md)
style_a_list = gr.State([DEFAULT_STYLE])
style_b_list = gr.State([DEFAULT_STYLE])
style_c_list = gr.State([DEFAULT_STYLE])
gr.Markdown("Hello world!")
with gr.Row():
style_count = gr.Number(label="作るスタイルの数", value=1, step=1)
get_style_btn = gr.Button("各モデルのスタイルを取得", variant="primary")
get_style_btn.click(
get_triple_styles,
inputs=[model_name_a, model_name_b, model_name_c],
outputs=[style_a_list, style_b_list, style_c_list],
)
def join_names(*args):
if all(arg == DEFAULT_STYLE for arg in args):
return DEFAULT_STYLE
return "_".join(args)
@gr.render(
inputs=[
style_count,
style_a_list,
style_b_list,
style_c_list,
method,
]
)
def render_style(
style_count, style_a_list, style_b_list, style_c_list, method
):
a_components = []
b_components = []
c_components = []
out_components = []
if method in ["usual", "add_null"]:
for i in range(style_count):
with gr.Row():
style_a = gr.Dropdown(
label="モデルAのスタイル名",
key=f"style_a_{i}",
choices=style_a_list,
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_b = gr.Dropdown(
label="モデルBのスタイル名",
key=f"style_b_{i}",
choices=style_b_list,
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_out = gr.Textbox(
label="出力スタイル名",
key=f"style_out_{i}",
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_a.change(
join_names,
inputs=[style_a, style_b],
outputs=[style_out],
)
style_b.change(
join_names,
inputs=[style_a, style_b],
outputs=[style_out],
)
a_components.append(style_a)
b_components.append(style_b)
out_components.append(style_out)
if method == "usual":
def _merge_usual(data):
style_tuple_list = [
(data[a], data[b], data[out])
for a, b, out in zip(
a_components, b_components, out_components
)
]
return merge_style_usual_gr(
data[model_name_a],
data[model_name_b],
data[speech_style_slider],
data[new_name],
style_tuple_list,
)
style_merge_btn.click(
_merge_usual,
inputs=set(
a_components
+ b_components
+ out_components
+ [
model_name_a,
model_name_b,
speech_style_slider,
new_name,
]
),
outputs=[info_style_merge, style],
)
else: # add_null
def _merge_add_null(data):
print("Method is add_null")
style_tuple_list = [
(data[a], data[b], data[out])
for a, b, out in zip(
a_components, b_components, out_components
)
]
return merge_style_add_null_gr(
data[model_name_a],
data[model_name_b],
data[speech_style_slider],
data[new_name],
style_tuple_list,
)
style_merge_btn.click(
_merge_add_null,
inputs=set(
a_components
+ b_components
+ out_components
+ [
model_name_a,
model_name_b,
speech_style_slider,
new_name,
]
),
outputs=[info_style_merge, style],
)
elif method in ["add_diff", "weighted_sum"]:
for i in range(style_count):
with gr.Row():
style_a = gr.Dropdown(
label="モデルAのスタイル名",
key=f"style_a_{i}",
choices=style_a_list,
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_b = gr.Dropdown(
label="モデルBのスタイル名",
key=f"style_b_{i}",
choices=style_b_list,
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_c = gr.Dropdown(
label="モデルCのスタイル名",
key=f"style_c_{i}",
choices=style_c_list,
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_out = gr.Textbox(
label="出力スタイル名",
key=f"style_out_{i}",
value=DEFAULT_STYLE,
interactive=i != 0,
)
style_a.change(
join_names,
inputs=[style_a, style_b, style_c],
outputs=[style_out],
)
style_b.change(
join_names,
inputs=[style_a, style_b, style_c],
outputs=[style_out],
)
style_c.change(
join_names,
inputs=[style_a, style_b, style_c],
outputs=[style_out],
)
a_components.append(style_a)
b_components.append(style_b)
c_components.append(style_c)
out_components.append(style_out)
if method == "add_diff":
def _merge_add_diff(data):
style_tuple_list = [
(data[a], data[b], data[c], data[out])
for a, b, c, out in zip(
a_components,
b_components,
c_components,
out_components,
)
]
return merge_style_add_diff_gr(
data[model_name_a],
data[model_name_b],
data[model_name_c],
data[speech_style_slider],
data[new_name],
style_tuple_list,
)
style_merge_btn.click(
_merge_add_diff,
inputs=set(
a_components
+ b_components
+ c_components
+ out_components
+ [
model_name_a,
model_name_b,
model_name_c,
speech_style_slider,
new_name,
]
),
outputs=[info_style_merge, style],
)
else: # weighted_sum
def _merge_weighted_sum(data):
style_tuple_list = [
(data[a], data[b], data[c], data[out])
for a, b, c, out in zip(
a_components,
b_components,
c_components,
out_components,
)
]
return merge_style_weighted_sum_gr(
data[model_name_a],
data[model_name_b],
data[model_name_c],
data[model_a_coeff],
data[model_b_coeff],
data[model_c_coeff],
data[new_name],
style_tuple_list,
)
style_merge_btn.click(
_merge_weighted_sum,
inputs=set(
a_components
+ b_components
+ c_components
+ out_components
+ [
model_name_a,
model_name_b,
model_name_c,
model_a_coeff,
model_b_coeff,
model_c_coeff,
new_name,
]
),
outputs=[info_style_merge, style],
)
with gr.Row():
add_btn = gr.Button("スタイルを増やす")
del_btn = gr.Button("スタイルを減らす")
add_btn.click(
lambda x: x + 1,
inputs=[style_count],
outputs=[style_count],
)
del_btn.click(
lambda x: x - 1 if x > 1 else 1,
inputs=[style_count],
outputs=[style_count],
)
style_merge_btn = gr.Button("スタイルのマージ", variant="primary")
info_style_merge = gr.Textbox(label="情報")
method.change(
method_change,
inputs=[method],
outputs=[
method_desc,
c_col,
model_a_coeff,
model_b_coeff,
model_c_coeff,
weight_row,
use_slerp_instead_of_lerp,
],
)
model_name_a.change(
model_holder.update_model_files_for_gradio,
inputs=[model_name_a],
outputs=[model_path_a],
)
model_name_b.change(
model_holder.update_model_files_for_gradio,
inputs=[model_name_b],
outputs=[model_path_b],
)
model_name_c.change(
model_holder.update_model_files_for_gradio,
inputs=[model_name_c],
outputs=[model_path_c],
)
refresh_button.click(
lambda: update_three_model_names_dropdown(model_holder),
outputs=[
model_name_a,
model_path_a,
model_name_b,
model_path_b,
model_name_c,
model_path_c,
],
)
model_merge_button.click(
merge_models_gr,
inputs=[
model_path_a,
model_path_b,
model_path_c,
model_a_coeff,
model_b_coeff,
model_c_coeff,
method,
new_name,
voice_slider,
voice_pitch_slider,
speech_style_slider,
tempo_slider,
use_slerp_instead_of_lerp,
],
outputs=[info_model_merge, style],
)
# style_merge_button.click(
# merge_style_gr,
# inputs=[
# model_name_a,
# model_name_b,
# model_name_c,
# method,
# speech_style_slider,
# new_name,
# style_triple_list,
# ],
# outputs=[info_style_merge, style],
# )
tts_button.click(
simple_tts,
inputs=[new_name, text_input, style, emotion_weight],
outputs=[tts_info, audio_output],
)
return app
if __name__ == "__main__":
model_holder = TTSModelHolder(
assets_root, device="cuda" if torch.cuda.is_available() else "cpu"
)
app = create_merge_app(model_holder)
app.launch(inbrowser=True)
|