Spaces:
Runtime error
Runtime error
File size: 12,728 Bytes
a6c26b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Define the script's usage example
USAGE_EXAMPLE = """
Example usage:
To process input *.txt files at input_path and save the vector db output at output_db:
python create_vector_db.py input_path output_db --chunk_size 100 --chunk_overlap 10
Required arguments:
- input_path: Path to the input dir containing the .txt files
- output_path: Path to the output vector db.
Optional arguments:
- --chunk_size: Size of the chunks (default: None).
- --chunk_overlap: Overlap between chunks (default: None).
"""
import os
import sys
import argparse
import logging
from langchain_community.document_loaders import DirectoryLoader, UnstructuredURLLoader
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
vectordb_dir = os.path.dirname(os.path.abspath(__file__))
utils_dir = os.path.abspath(os.path.join(vectordb_dir, ".."))
repo_dir = os.path.abspath(os.path.join(utils_dir, ".."))
sys.path.append(repo_dir)
sys.path.append(utils_dir)
from utils.model_wrappers.api_gateway import APIGateway
import uuid
import streamlit as st
EMBEDDING_MODEL = "intfloat/e5-large-v2"
NORMALIZE_EMBEDDINGS = True
VECTORDB_LOG_FILE_NAME = "vector_db.log"
# Configure the logger
logging.basicConfig(
level=logging.INFO, # Set the logging level (e.g., INFO, DEBUG)
format="%(asctime)s [%(levelname)s] - %(message)s", # Define the log message format
handlers=[
logging.StreamHandler(), # Output logs to the console
logging.FileHandler(VECTORDB_LOG_FILE_NAME),
],
)
# Create a logger object
logger = logging.getLogger(__name__)
class VectorDb():
"""
A class for creating, updating and loading FAISS or Chroma vector databases,
to use them with retrieval augmented generation tasks with langchain
Args:
None
Attributes:
None
Methods:
load_files: Load files from an input directory as langchain documents
get_text_chunks: Get text chunks from a list of documents
get_token_chunks: Get token chunks from a list of documents
create_vector_store: Create a vector store from chunks and an embedding model
load_vdb: load a previous stored vector database
update_vdb: Update an existing vector store with new chunks
create_vdb: Create a vector database from the raw files in a specific input directory
"""
def __init__(self) -> None:
self.collection_id = str(uuid.uuid4())
self.vector_collections = set()
def load_files(self, input_path, recursive=False, load_txt=True, load_pdf=False, urls = None) -> list:
"""Load files from input location
Args:
input_path : input location of files
recursive (bool, optional): flag to load files recursively. Defaults to False.
load_txt (bool, optional): flag to load txt files. Defaults to True.
load_pdf (bool, optional): flag to load pdf files. Defaults to False.
urls (list, optional): list of urls to load. Defaults to None.
Returns:
list: list of documents
"""
docs=[]
text_loader_kwargs={'autodetect_encoding': True}
if input_path is not None:
if load_txt:
loader = DirectoryLoader(input_path, glob="*.txt", recursive=recursive, show_progress=True, loader_kwargs=text_loader_kwargs)
docs.extend(loader.load())
if load_pdf:
loader = DirectoryLoader(input_path, glob="*.pdf", recursive=recursive, show_progress=True, loader_kwargs=text_loader_kwargs)
docs.extend(loader.load())
if urls:
loader = UnstructuredURLLoader(urls=urls)
docs.extend(loader.load())
logger.info(f"Total {len(docs)} files loaded")
return docs
def get_text_chunks(self, docs: list, chunk_size: int, chunk_overlap: int, meta_data: list = None) -> list:
"""Gets text chunks. If metadata is not None, it will create chunks with metadata elements.
Args:
docs (list): list of documents or texts. If no metadata is passed, this parameter is a list of documents.
If metadata is passed, this parameter is a list of texts.
chunk_size (int): chunk size in number of characters
chunk_overlap (int): chunk overlap in number of characters
metadata (list, optional): list of metadata in dictionary format. Defaults to None.
Returns:
list: list of documents
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len
)
if meta_data is None:
logger.info(f"Splitter: splitting documents")
chunks = text_splitter.split_documents(docs)
else:
logger.info(f"Splitter: creating documents with metadata")
chunks = text_splitter.create_documents(docs, meta_data)
logger.info(f"Total {len(chunks)} chunks created")
return chunks
def get_token_chunks(self, docs: list, chunk_size: int, chunk_overlap: int, tokenizer) -> list:
"""Gets token chunks. If metadata is not None, it will create chunks with metadata elements.
Args:
docs (list): list of documents or texts. If no metadata is passed, this parameter is a list of documents.
If metadata is passed, this parameter is a list of texts.
chunk_size (int): chunk size in number of tokens
chunk_overlap (int): chunk overlap in number of tokens
Returns:
list: list of documents
"""
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer, chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
logger.info(f"Splitter: splitting documents")
chunks = text_splitter.split_documents(docs)
logger.info(f"Total {len(chunks)} chunks created")
return chunks
def create_vector_store(self, chunks: list, embeddings: HuggingFaceInstructEmbeddings, db_type: str,
output_db: str = None, collection_name: str = None):
"""Creates a vector store
Args:
chunks (list): list of chunks
embeddings (HuggingFaceInstructEmbeddings): embedding model
db_type (str): vector db type
output_db (str, optional): output path to save the vector db. Defaults to None.
"""
if collection_name is None:
collection_name = f"collection_{self.collection_id}"
logger.info(f'This is the collection name: {collection_name}')
if db_type == "faiss":
vector_store = FAISS.from_documents(
documents=chunks,
embedding=embeddings
)
if output_db:
vector_store.save_local(output_db)
elif db_type == "chroma":
if output_db:
vector_store = Chroma()
vector_store.delete_collection()
vector_store = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
persist_directory=output_db,
collection_name=collection_name
)
else:
vector_store = Chroma()
vector_store.delete_collection()
vector_store = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
collection_name=collection_name
)
self.vector_collections.add(collection_name)
elif db_type == "qdrant":
if output_db:
vector_store = Qdrant.from_documents(
documents=chunks,
embedding=embeddings,
path=output_db,
collection_name="test_collection",
)
else:
vector_store = Qdrant.from_documents(
documents=chunks,
embedding=embeddings,
collection_name="test_collection",
)
logger.info(f"Vector store saved to {output_db}")
return vector_store
def load_vdb(self, persist_directory, embedding_model, db_type="chroma", collection_name=None):
if db_type == "faiss":
vector_store = FAISS.load_local(persist_directory, embedding_model, allow_dangerous_deserialization=True)
elif db_type == "chroma":
if collection_name:
vector_store = Chroma(
persist_directory=persist_directory,
embedding_function=embedding_model,
collection_name=collection_name
)
else:
vector_store = Chroma(
persist_directory=persist_directory,
embedding_function=embedding_model
)
elif db_type == "qdrant":
# TODO: Implement Qdrant loading
pass
else:
raise ValueError(f"Unsupported database type: {db_type}")
return vector_store
def update_vdb(self, chunks: list, embeddings, db_type: str, input_db: str = None,
output_db: str = None):
if db_type == "faiss":
vector_store = FAISS.load_local(input_db, embeddings, allow_dangerous_deserialization=True)
new_vector_store = self.create_vector_store(chunks, embeddings, db_type, None)
vector_store.merge_from(new_vector_store)
if output_db:
vector_store.save_local(output_db)
elif db_type == "chroma":
# TODO implement update method for chroma
pass
elif db_type == "qdrant":
# TODO implement update method for qdrant
pass
return vector_store
def create_vdb(
self,
input_path,
chunk_size,
chunk_overlap,
db_type,
output_db=None,
recursive=False,
tokenizer=None,
load_txt=True,
load_pdf=False,
urls=None,
embedding_type="cpu",
batch_size= None,
coe = None,
select_expert = None
):
docs = self.load_files(input_path, recursive=recursive, load_txt=load_txt, load_pdf=load_pdf, urls=urls)
if tokenizer is None:
chunks = self.get_text_chunks(docs, chunk_size, chunk_overlap)
else:
chunks = self.get_token_chunks(docs, chunk_size, chunk_overlap, tokenizer)
embeddings = APIGateway.load_embedding_model(
type=embedding_type,
batch_size=batch_size,
coe=coe,
select_expert=select_expert
)
vector_store = self.create_vector_store(chunks, embeddings, db_type, output_db)
return vector_store
def dir_path(path):
if os.path.isdir(path):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
# Parse the arguments
def parse_arguments():
parser = argparse.ArgumentParser(description="Process command line arguments.")
parser.add_argument("-input_path", type=dir_path, help="path to input directory")
parser.add_argument("--chunk_size", type=int, help="chunk size for splitting")
parser.add_argument("--chunk_overlap", type=int, help="chunk overlap for splitting")
parser.add_argument("-output_path", type=dir_path, help="path to input directory")
return parser.parse_args()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process data with optional chunking")
# Required arguments
parser.add_argument("--input_path", type=str, help="Path to the input directory")
parser.add_argument("--output_db", type=str, help="Path to the output vectordb")
# Optional arguments
parser.add_argument(
"--chunk_size", type=int, default=1000, help="Chunk size (default: 1000)"
)
parser.add_argument(
"--chunk_overlap", type=int, default=200, help="Chunk overlap (default: 200)"
)
parser.add_argument(
"--db_type",
type=str,
default="faiss",
help="Type of vector store (default: faiss)",
)
args = parser.parse_args()
vectordb = VectorDb()
vectordb.create_vdb(
args.input_path,
args.output_db,
args.chunk_size,
args.chunk_overlap,
args.db_type,
)
|