Spaces:
Runtime error
Runtime error
File size: 20,657 Bytes
a6c26b1 2c44136 a6c26b1 2c44136 a6c26b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
import os
import yaml
import subprocess
import json
import logging
from typing import Dict, Optional, List, Tuple, Union, Any
from dotenv import load_dotenv
from langchain.docstore.document import Document
import shutil
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
load_dotenv()
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
class SambaParse:
def __init__(self, config_path: str):
with open(config_path, "r") as file:
self.config = yaml.safe_load(file)
# Set the default Unstructured API key as an environment variable if not already set
if "UNSTRUCTURED_API_KEY" not in os.environ:
default_api_key = self.config.get("partitioning", {}).get("default_unstructured_api_key")
if default_api_key:
os.environ["UNSTRUCTURED_API_KEY"] = default_api_key
def run_ingest(
self,
source_type: str,
input_path: Optional[str] = None,
additional_metadata: Optional[Dict] = None,
) -> Tuple[List[str], List[Dict], List[Document]]:
"""
Runs the ingest process for the specified source type and input path.
Args:
source_type (str): The type of source to ingest (e.g., 'local', 'confluence', 'github', 'google-drive').
input_path (Optional[str]): The input path for the source (only required for 'local' source type).
additional_metadata (Optional[Dict]): Additional metadata to include in the processed documents.
Returns:
Tuple[List[str], List[Dict], List[Document]]: A tuple containing the extracted texts, metadata, and LangChain documents.
"""
if not self.config["partitioning"]["partition_by_api"]:
return self._run_ingest_pymupdf(input_path, additional_metadata)
output_dir = self.config["processor"]["output_dir"]
# Create the output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Delete contents of the output directory using shell command
del_command = f"rm -rf {output_dir}/*"
logger.info(f"Deleting contents of output directory: {output_dir}")
subprocess.run(del_command, shell=True, check=True)
command = [
"unstructured-ingest",
source_type,
"--output-dir",
output_dir,
"--num-processes",
str(self.config["processor"]["num_processes"]),
]
if self.config["processor"]["reprocess"] == True:
command.extend(["--reprocess"])
# Add partition arguments
command.extend(
[
"--strategy",
self.config["partitioning"]["strategy"],
"--ocr-languages",
",".join(self.config["partitioning"]["ocr_languages"]),
"--encoding",
self.config["partitioning"]["encoding"],
"--fields-include",
",".join(self.config["partitioning"]["fields_include"]),
"--metadata-exclude",
",".join(self.config["partitioning"]["metadata_exclude"]),
"--metadata-include",
",".join(self.config["partitioning"]["metadata_include"]),
]
)
if self.config["partitioning"]["skip_infer_table_types"]:
command.extend(
[
"--skip-infer-table-types",
",".join(self.config["partitioning"]["skip_infer_table_types"]),
]
)
if self.config["partitioning"]["flatten_metadata"]:
command.append("--flatten-metadata")
if source_type == "local":
if input_path is None:
raise ValueError("Input path is required for local source type.")
command.extend(["--input-path", f'"{input_path}"'])
if self.config["sources"]["local"]["recursive"]:
command.append("--recursive")
elif source_type == "confluence":
command.extend(
[
"--url",
self.config["sources"]["confluence"]["url"],
"--user-email",
self.config["sources"]["confluence"]["user_email"],
"--api-token",
self.config["sources"]["confluence"]["api_token"],
]
)
elif source_type == "github":
command.extend(
[
"--url",
self.config["sources"]["github"]["url"],
"--git-branch",
self.config["sources"]["github"]["branch"],
]
)
elif source_type == "google-drive":
command.extend(
[
"--drive-id",
self.config["sources"]["google_drive"]["drive_id"],
"--service-account-key",
self.config["sources"]["google_drive"]["service_account_key"],
]
)
if self.config["sources"]["google_drive"]["recursive"]:
command.append("--recursive")
else:
raise ValueError(f"Unsupported source type: {source_type}")
if self.config["processor"]["verbose"]:
command.append("--verbose")
if self.config["partitioning"]["partition_by_api"]:
api_key = os.getenv("UNSTRUCTURED_API_KEY")
partition_endpoint_url = f"{self.config['partitioning']['partition_endpoint']}:{self.config['partitioning']['unstructured_port']}"
if api_key:
command.extend(["--partition-by-api", "--api-key", api_key])
command.extend(["--partition-endpoint", partition_endpoint_url])
else:
logger.warning("No Unstructured API key available. Partitioning by API will be skipped.")
if self.config["partitioning"]["strategy"] == "hi_res":
if (
"hi_res_model_name" in self.config["partitioning"]
and self.config["partitioning"]["hi_res_model_name"]
):
command.extend(
[
"--hi-res-model-name",
self.config["partitioning"]["hi_res_model_name"],
]
)
logger.warning(
"You've chosen the high-resolution partitioning strategy. Grab a cup of coffee or tea while you wait, as this may take some time due to OCR and table detection."
)
if self.config["chunking"]["enabled"]:
command.extend(
[
"--chunking-strategy",
self.config["chunking"]["strategy"],
"--chunk-max-characters",
str(self.config["chunking"]["chunk_max_characters"]),
"--chunk-overlap",
str(self.config["chunking"]["chunk_overlap"]),
]
)
if self.config["chunking"]["strategy"] == "by_title":
command.extend(
[
"--chunk-combine-text-under-n-chars",
str(self.config["chunking"]["combine_under_n_chars"]),
]
)
if self.config["embedding"]["enabled"]:
command.extend(
[
"--embedding-provider",
self.config["embedding"]["provider"],
"--embedding-model-name",
self.config["embedding"]["model_name"],
]
)
if self.config["destination_connectors"]["enabled"]:
destination_type = self.config["destination_connectors"]["type"]
if destination_type == "chroma":
command.extend(
[
"chroma",
"--host",
self.config["destination_connectors"]["chroma"]["host"],
"--port",
str(self.config["destination_connectors"]["chroma"]["port"]),
"--collection-name",
self.config["destination_connectors"]["chroma"][
"collection_name"
],
"--tenant",
self.config["destination_connectors"]["chroma"]["tenant"],
"--database",
self.config["destination_connectors"]["chroma"]["database"],
"--batch-size",
str(self.config["destination_connectors"]["batch_size"]),
]
)
elif destination_type == "qdrant":
command.extend(
[
"qdrant",
"--location",
self.config["destination_connectors"]["qdrant"]["location"],
"--collection-name",
self.config["destination_connectors"]["qdrant"][
"collection_name"
],
"--batch-size",
str(self.config["destination_connectors"]["batch_size"]),
]
)
else:
raise ValueError(
f"Unsupported destination connector type: {destination_type}"
)
command_str = " ".join(command)
logger.info(f"Running command: {command_str}")
logger.info(
"This may take some time depending on the size of your data. Please be patient..."
)
subprocess.run(command_str, shell=True, check=True)
logger.info("Ingest process completed successfully!")
# Call the additional processing function if enabled
if self.config["additional_processing"]["enabled"]:
logger.info("Performing additional processing...")
texts, metadata_list, langchain_docs = additional_processing(
directory=output_dir,
extend_metadata=self.config["additional_processing"]["extend_metadata"],
additional_metadata=additional_metadata,
replace_table_text=self.config["additional_processing"][
"replace_table_text"
],
table_text_key=self.config["additional_processing"]["table_text_key"],
return_langchain_docs=self.config["additional_processing"][
"return_langchain_docs"
],
convert_metadata_keys_to_string=self.config["additional_processing"][
"convert_metadata_keys_to_string"
],
)
logger.info("Additional processing completed.")
return texts, metadata_list, langchain_docs
def _run_ingest_pymupdf(
self, input_path: str, additional_metadata: Optional[Dict] = None
) -> Tuple[List[str], List[Dict], List[Document]]:
"""
Runs the ingest process using PyMuPDF via LangChain.
Args:
input_path (str): The input path for the source.
additional_metadata (Optional[Dict]): Additional metadata to include in the processed documents.
Returns:
Tuple[List[str], List[Dict], List[Document]]: A tuple containing the extracted texts, metadata, and LangChain documents.
"""
if not input_path:
raise ValueError("Input path is required for PyMuPDF processing.")
texts = []
metadata_list = []
langchain_docs = []
if os.path.isfile(input_path):
file_paths = [input_path]
else:
file_paths = [
os.path.join(input_path, f)
for f in os.listdir(input_path)
if f.lower().endswith('.pdf')
]
for file_path in file_paths:
loader = PyMuPDFLoader(file_path)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=['\n\n', '\n', ' ', ''],
is_separator_regex=False,
)
docs = splitter.split_documents(docs)
for doc in docs:
text = doc.page_content
metadata = doc.metadata
# Add 'filename' key to metadata
metadata['filename'] = os.path.basename(metadata['source'])
if additional_metadata:
metadata.update(additional_metadata)
texts.append(text)
metadata_list.append(metadata)
langchain_docs.append(doc)
return texts, metadata_list, langchain_docs
def convert_to_string(value: Union[List, Tuple, Dict, Any]) -> str:
"""
Convert a value to its string representation.
Args:
value (Union[List, Tuple, Dict, Any]): The value to be converted to a string.
Returns:
str: The string representation of the value.
"""
if isinstance(value, (list, tuple)):
return ", ".join(map(str, value))
elif isinstance(value, dict):
return json.dumps(value)
else:
return str(value)
def additional_processing(
directory: str,
extend_metadata: bool,
additional_metadata: Optional[Dict],
replace_table_text: bool,
table_text_key: str,
return_langchain_docs: bool,
convert_metadata_keys_to_string: bool,
):
"""
Performs additional processing on the extracted documents.
Args:
directory (str): The directory containing the extracted JSON files.
extend_metadata (bool): Whether to extend the metadata with additional metadata.
additional_metadata (Optional[Dict]): Additional metadata to include in the processed documents.
replace_table_text (bool): Whether to replace table text with the specified table text key.
table_text_key (str): The key to use for replacing table text.
return_langchain_docs (bool): Whether to return LangChain documents.
convert_metadata_keys_to_string (bool): Whether to convert non-string metadata keys to string.
Returns:
Tuple[List[str], List[Dict], List[Document]]: A tuple containing the extracted texts, metadata, and LangChain documents.
"""
if os.path.isfile(directory):
file_paths = [directory]
else:
file_paths = [
os.path.join(directory, f)
for f in os.listdir(directory)
if f.endswith(".json")
]
texts = []
metadata_list = []
langchain_docs = []
for file_path in file_paths:
with open(file_path, "r") as file:
data = json.load(file)
for element in data:
if extend_metadata and additional_metadata:
element["metadata"].update(additional_metadata)
if replace_table_text and element["type"] == "Table":
element["text"] = element["metadata"][table_text_key]
metadata = element["metadata"].copy()
if convert_metadata_keys_to_string:
metadata = {
str(key): convert_to_string(value)
for key, value in metadata.items()
}
for key in element:
if key not in ["text", "metadata", "embeddings"]:
metadata[key] = element[key]
if "page_number" in metadata:
metadata["page"] = metadata["page_number"]
else:
metadata["page"] = 1
metadata_list.append(metadata)
texts.append(element["text"])
if return_langchain_docs:
langchain_docs.extend(get_langchain_docs(texts, metadata_list))
with open(file_path, "w") as file:
json.dump(data, file, indent=2)
return texts, metadata_list, langchain_docs
def get_langchain_docs(texts: List[str], metadata_list: List[Dict]) -> List[Document]:
"""
Creates LangChain documents from the extracted texts and metadata.
Args:
texts (List[str]): The extracted texts.
metadata_list (List[Dict]): The metadata associated with each text.
Returns:
List[Document]: A list of LangChain documents.
"""
return [
Document(page_content=content, metadata=metadata)
for content, metadata in zip(texts, metadata_list)
]
def parse_doc_universal(
doc: str, additional_metadata: Optional[Dict] = None, source_type: str = "local"
) -> Tuple[List[str], List[Dict], List[Document]]:
"""
Extract text, tables, images, and metadata from a document or a folder of documents.
Args:
doc (str): Path to the document or folder of documents.
additional_metadata (Optional[Dict], optional): Additional metadata to include in the processed documents.
Defaults to an empty dictionary.
source_type (str, optional): The type of source to ingest. Defaults to 'local'.
Returns:
Tuple[List[str], List[Dict], List[Document]]: A tuple containing:
- A list of extracted text per page.
- A list of extracted metadata per page.
- A list of LangChain documents.
"""
if additional_metadata is None:
additional_metadata = {}
# Get the directory of the current file
current_dir = os.path.dirname(os.path.abspath(__file__))
# Join the current directory with the relative path of the config file
config_path = os.path.join(current_dir, "config.yaml")
wrapper = SambaParse(config_path)
def process_file(file_path):
if file_path.lower().endswith('.pdf'):
return wrapper._run_ingest_pymupdf(file_path, additional_metadata)
else:
# Use the original method for non-PDF files
return wrapper.run_ingest(source_type, input_path=file_path, additional_metadata=additional_metadata)
if os.path.isfile(doc):
return process_file(doc)
else:
all_texts, all_metadata, all_docs = [], [], []
for root, _, files in os.walk(doc):
for file in files:
file_path = os.path.join(root, file)
texts, metadata_list, langchain_docs = process_file(file_path)
all_texts.extend(texts)
all_metadata.extend(metadata_list)
all_docs.extend(langchain_docs)
return all_texts, all_metadata, all_docs
def parse_doc_streamlit(docs: List,
kit_dir: str,
additional_metadata: Optional[Dict] = None,
) -> List[Document]:
"""
Parse the uploaded documents and return a list of LangChain documents.
Args:
docs (List[UploadFile]): A list of uploaded files.
kit_dir (str): The directory of the current kit.
additional_metadata (Optional[Dict], optional): Additional metadata to include in the processed documents.
Defaults to an empty dictionary.
Returns:
List[Document]: A list of LangChain documents.
"""
if additional_metadata is None:
additional_metadata = {}
# Create the data/tmp folder if it doesn't exist
temp_folder = os.path.join(kit_dir, "data/tmp")
if not os.path.exists(temp_folder):
os.makedirs(temp_folder)
else:
# If there are already files there, delete them
for filename in os.listdir(temp_folder):
file_path = os.path.join(temp_folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
# Save all selected files to the tmp dir with their file names
for doc in docs:
temp_file = os.path.join(temp_folder, doc.name)
with open(temp_file, "wb") as f:
f.write(doc.getvalue())
# Pass in the temp folder for processing into the parse_doc_universal function
_, _, langchain_docs = parse_doc_universal(doc=temp_folder, additional_metadata=additional_metadata)
return langchain_docs |