Spaces:
Runtime error
Runtime error
File size: 9,517 Bytes
a6c26b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# SambaParse
SambaParse is a Python library that simplifies the process of extracting and processing unstructured data using the Unstructured.io API. It provides a convenient wrapper around the Unstructured.io CLI tool, allowing you to ingest data from various sources, perform partitioning, chunking, embedding, and load the processed data into a vector database. It's designed to be used within AI Starter kits and SN Apps, unifying our data ingestion and document intelligence platform. This allows us to keep our code base centralized for data ingestion kits.
## Prerequisites
Before using SambaParse, make sure you have the following:
- Docker installed on your machine (or access to another API server)
- An Unstructured.io API key
Before using SambaParse, make sure you have the following:
- Create a `.env` file in the ai-starter-kit root directory (not in the parsing folder root):
```bash
UNSTRUCTURED_API_KEY=your_api_key_here
```
## Setup
### Pre Reqs
Using pyenv to manage virtualenv's is recommended
Mac install instructions. See pyenv-virtualenv repo for more detailed instructions.
```bash
brew install pyenv-virtualenv
```
- Create a python venv using python version 3.10.12
```bash
pyenv install 3.10.12
pyenv virtualenv 3.10.12 sambaparse
pyenv activate sambaparse
```
- Clone the ai-starter-kit repo and cd:
```bash
git clone https://github.com/sambanova/ai-starter-kit
```
- cd into utils/parsing and pip install the requirements
```bash
pip install -r requirements.txt
```
- cd into the unstructured-api foder and Install the unstructured-api make-file:
```bash
cd unstructured-api
```
- Run
```bash
make install
```
- Run The Web Server:
```bash
make run-web-app
```
This script will start the Unstructured API server using the specified API key and expose it on port 8005.
- Alternatively, if you have another Unstructured API server running on a different instance, make sure to update the `partition_endpoint` and `unstructured_port` values in the YAML configuration file accordingly.
## Usage
1. Import the `SambaParse` class from the `ai-starter-kit` library:
```python
from utils.parsing.sambaparse import SambaParse
```
2. Create a YAML configuration file (e.g., `config.yaml`) to specify the desired settings for the ingestion process. Here's the configuration for use cases 1 and 2 ie local files and folders:
```yaml
processor:
verbose: True
output_dir: './output'
num_processes: 2
sources:
local:
recursive: True
confluence:
api_token: 'your_confluence_api_token'
user_email: '[email protected]'
url: 'https://your-confluence-url.atlassian.net'
github:
url: 'owner/repo'
branch: 'main'
google_drive:
service_account_key: 'path/to/service_account_key.json'
recursive: True
drive_id: 'your_drive_id'
partitioning:
pdf_infer_table_structure: True
skip_infer_table_types: []
strategy: 'auto'
hi_res_model_name: 'yolox'
ocr_languages: ['eng']
encoding: 'utf-8'
fields_include: ['element_id', 'text', 'type', 'metadata', 'embeddings']
flatten_metadata: False
metadata_exclude: []
metadata_include: []
partition_endpoint: 'http://localhost'
unstructured_port: 8005
partition_by_api: True
chunking:
enabled: True
strategy: 'basic'
chunk_max_characters: 1500
chunk_overlap: 300
embedding:
enabled: False
provider: 'langchain-huggingface'
model_name: 'intfloat/e5-large-v2'
destination_connectors:
enabled: False
type: 'chroma'
batch_size: 80
chroma:
host: 'localhost'
port: 8004
collection_name: 'snconf'
tenant: 'default_tenant'
database: 'default_database'
qdrant:
location: 'http://localhost:6333'
collection_name: 'test'
additional_processing:
enabled: True
extend_metadata: True
replace_table_text: True
table_text_key: 'text_as_html'
return_langchain_docs: True
convert_metadata_keys_to_string: True
```
Make sure to place the `config.yaml` file in the desired folder.
3. Create an instance of the `SambaParse` class, passing the path to the YAML configuration file:
```python
sambaparse = SambaParse('path/to/config.yaml')
```
4. Use the `run_ingest` method to process your data:
- For a single file:
```python
source_type = 'local'
input_path = 'path/to/your/file.pdf'
additional_metadata = {'key': 'value'}
texts, metadata_list, langchain_docs = sambaparse.run_ingest(source_type, input_path=input_path, additional_metadata=additional_metadata)
```
- For a folder:
```python
source_type = 'local'
input_path = 'path/to/your/file.pdf'
additional_metadata = {'key': 'value'}
texts, metadata_list, langchain_docs = sambaparse.run_ingest(source_type, input_path=input_path, additional_metadata=additional_metadata)
```
- For Confluence:
```python
source_type = 'confluence'
additional_metadata = {'key': 'value'}
texts, metadata_list, langchain_docs = sambaparse.run_ingest(source_type, additional_metadata=additional_metadata)
```
Note that for conflence you must enable embedding and destinatation connectors automatically ie Chroma and turn off additional processing (ie langchain), an example yaml to do that is below
```yaml
processor:
verbose: True
output_dir: './output'
num_processes: 2
sources:
local:
recursive: True
confluence:
api_token: 'your_confluence_api_token'
user_email: '[email protected]'
url: 'https://your-confluence-url.atlassian.net'
github:
url: 'owner/repo'
branch: 'main'
google_drive:
service_account_key: 'path/to/service_account_key.json'
recursive: True
drive_id: 'your_drive_id'
partitioning:
pdf_infer_table_structure: True
skip_infer_table_types: []
strategy: 'auto'
hi_res_model_name: 'yolox'
ocr_languages: ['eng']
encoding: 'utf-8'
fields_include: ['element_id', 'text', 'type', 'metadata', 'embeddings']
flatten_metadata: False
metadata_exclude: []
metadata_include: []
partition_endpoint: 'http://localhost'
unstructured_port: 8005
partition_by_api: True
chunking:
enabled: True
strategy: 'basic'
chunk_max_characters: 1500
chunk_overlap: 300
embedding:
enabled: True
provider: 'langchain-huggingface'
model_name: 'intfloat/e5-large-v2'
destination_connectors:
enabled: True
type: 'chroma'
batch_size: 80
chroma:
host: 'localhost'
port: 8004
collection_name: 'snconf'
tenant: 'default_tenant'
database: 'default_database'
qdrant:
location: 'http://localhost:6333'
collection_name: 'test'
additional_processing:
enabled: False
extend_metadata: True
replace_table_text: True
table_text_key: 'text_as_html'
return_langchain_docs: True
convert_metadata_keys_to_string: True
```
In addition for confluence you will need to have a Chroma Server running on port 8004, you can do this by running the docker command below
```bash
docker run -d --rm --name chromadb -v ./chroma:/chroma/chroma -e IS_PERSISTENT=TRUE -e ANONYMIZED_TELEMETRY=TRUE -p 8004:8000 chromadb/chroma:latest
```
The `run_ingest` method returns a tuple containing the extracted texts, metadata, and LangChain documents (if `return_langchain_docs` is set to `True` in the configuration).
5. Process the returned data as needed:
- `texts`: A list of extracted text elements from the documents.
- `metadata_list`: A list of metadata dictionaries for each text element.
- `langchain_docs`: A list of LangChain `Document` objects, which combine the text and metadata.
#### Configuration Options
The YAML configuration file allows you to customize various aspects of the ingestion process. Here are some of the key options:
- `processor`: Settings related to the processing of documents, such as the output directory and the number of processes to use.
- `sources`: Configuration for different data sources, including local files, Confluence, GitHub, and Google Drive.
- `partitioning`: Options for partitioning the documents, including the strategy, OCR languages, and API settings.
- `chunking`: Settings for chunking the documents, such as enabling chunking, specifying the chunking strategy, and setting the maximum chunk size and overlap.
- `embedding`: Options for embedding the documents, including enabling embedding, specifying the embedding provider, and setting the model name.
- `additional_processing`: Configuration for additional processing steps, such as extending metadata, replacing table text, and returning LangChain documents.
Make sure to review and modify the configuration file according to your specific requirements. |