Spaces:
Runtime error
Runtime error
File size: 16,486 Bytes
a6c26b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import json
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
class ChatSambaNovaCloud(BaseChatModel):
"""
SambaNova Cloud chat model.
Setup:
To use, you should have the environment variables
``SAMBANOVA_URL`` set with your SambaNova Cloud URL.
``SAMBANOVA_API_KEY`` set with your SambaNova Cloud API Key.
http://cloud.sambanova.ai/
Example:
.. code-block:: python
ChatSambaNovaCloud(
sambanova_url = SambaNova cloud endpoint URL,
sambanova_api_key = set with your SambaNova cloud API key,
model = model name,
streaming = set True for use streaming API
max_tokens = max number of tokens to generate,
temperature = model temperature,
top_p = model top p,
top_k = model top k,
stream_options = include usage to get generation metrics
)
Key init args — completion params:
model: str
The name of the model to use, e.g., llama3-8b.
streaming: bool
Whether to use streaming or not
max_tokens: int
max tokens to generate
temperature: float
model temperature
top_p: float
model top p
top_k: int
model top k
stream_options: dict
stream options, include usage to get generation metrics
Key init args — client params:
sambanova_url: str
SambaNova Cloud Url
sambanova_api_key: str
SambaNova Cloud api key
Instantiate:
.. code-block:: python
from langchain_community.chat_models import ChatSambaNovaCloud
chat = ChatSambaNovaCloud(
sambanova_url = SambaNova cloud endpoint URL,
sambanova_api_key = set with your SambaNova cloud API key,
model = model name,
streaming = set True for streaming
max_tokens = max number of tokens to generate,
temperature = model temperature,
top_p = model top p,
top_k = model top k,
stream_options = include usage to get generation metrics
)
Invoke:
.. code-block:: python
messages = [
SystemMessage(content="your are an AI assistant."),
HumanMessage(content="tell me a joke."),
]
response = chat.invoke(messages)
Stream:
.. code-block:: python
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
Async:
.. code-block:: python
response = chat.ainvoke(messages)
await response
Token usage:
.. code-block:: python
response = chat.invoke(messages)
print(response.response_metadata["usage"]["prompt_tokens"]
print(response.response_metadata["usage"]["total_tokens"]
Response metadata
.. code-block:: python
response = chat.invoke(messages)
print(response.response_metadata)
"""
sambanova_url: str = Field(default="")
"""SambaNova Cloud Url"""
sambanova_api_key: SecretStr = Field(default="")
"""SambaNova Cloud api key"""
model: str = Field(default="llama3-8b")
"""The name of the model"""
streaming: bool = Field(default=False)
"""Whether to use streaming or not"""
max_tokens: int = Field(default=1024)
"""max tokens to generate"""
temperature: float = Field(default=0.7)
"""model temperature"""
top_p: float = Field(default=0.0)
"""model top p"""
top_k: int = Field(default=1)
"""model top k"""
stream_options: dict = Field(default={"include_usage": True})
"""stream options, include usage to get generation metrics"""
class Config:
allow_population_by_field_name = True
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
@property
def lc_secrets(self) -> Dict[str, str]:
return {"sambanova_api_key": "sambanova_api_key"}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Return a dictionary of identifying parameters.
This information is used by the LangChain callback system, which
is used for tracing purposes make it possible to monitor LLMs.
"""
return {
"model": self.model,
"streaming": self.streaming,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"stream_options": self.stream_options,
}
@property
def _llm_type(self) -> str:
"""Get the type of language model used by this chat model."""
return "sambanovacloud-chatmodel"
def __init__(self, **kwargs: Any) -> None:
"""init and validate environment variables"""
kwargs["sambanova_url"] = get_from_dict_or_env(
kwargs,
"sambanova_url",
"SAMBANOVA_URL",
default="https://api.sambanova.ai/v1/chat/completions",
)
kwargs["sambanova_api_key"] = convert_to_secret_str(
get_from_dict_or_env(kwargs, "sambanova_api_key", "SAMBANOVA_API_KEY")
)
super().__init__(**kwargs)
def _handle_request(
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
) -> Dict[str, Any]:
"""
Performs a post request to the LLM API.
Args:
messages_dicts: List of role / content dicts to use as input.
stop: list of stop tokens
Returns:
An iterator of response dicts.
"""
data = {
"messages": messages_dicts,
"max_tokens": self.max_tokens,
"stop": stop,
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
}
http_session = requests.Session()
response = http_session.post(
self.sambanova_url,
headers={
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
"Content-Type": "application/json",
},
json=data,
)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}."
f"{response.text}."
)
response_dict = response.json()
if response_dict.get("error"):
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}."
f"{response_dict}."
)
return response_dict
def _handle_streaming_request(
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
) -> Iterator[Dict]:
"""
Performs an streaming post request to the LLM API.
Args:
messages_dicts: List of role / content dicts to use as input.
stop: list of stop tokens
Returns:
An iterator of response dicts.
"""
try:
import sseclient
except ImportError:
raise ImportError(
"could not import sseclient library"
"Please install it with `pip install sseclient-py`."
)
data = {
"messages": messages_dicts,
"max_tokens": self.max_tokens,
"stop": stop,
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"stream": True,
"stream_options": self.stream_options,
}
http_session = requests.Session()
response = http_session.post(
self.sambanova_url,
headers={
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
"Content-Type": "application/json",
},
json=data,
stream=True,
)
client = sseclient.SSEClient(response)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}."
f"{response.text}."
)
for event in client.events():
chunk = {
"event": event.event,
"data": event.data,
"status_code": response.status_code,
}
if chunk["event"] == "error_event" or chunk["status_code"] != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}."
f"{chunk}."
)
try:
# check if the response is a final event
# in that case event data response is '[DONE]'
if chunk["data"] != "[DONE]":
if isinstance(chunk["data"], str):
data = json.loads(chunk["data"])
else:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}."
f"{chunk}."
)
if data.get("error"):
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{chunk['status_code']}."
f"{chunk}."
)
yield data
except Exception:
raise Exception(
f"Error getting content chunk raw streamed response: {chunk}"
)
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
"""
convert a BaseMessage to a dictionary with Role / content
Args:
message: BaseMessage
Returns:
messages_dict: role / content dict
"""
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, ToolMessage):
message_dict = {"role": "tool", "content": message.content}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _create_message_dicts(
self, messages: List[BaseMessage]
) -> List[Dict[str, Any]]:
"""
convert a lit of BaseMessages to a list of dictionaries with Role / content
Args:
messages: list of BaseMessages
Returns:
messages_dicts: list of role / content dicts
"""
message_dicts = [self._convert_message_to_dict(m) for m in messages]
return message_dicts
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""
SambaNovaCloud chat model logic.
Call SambaNovaCloud API.
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
if stream_iter:
return generate_from_stream(stream_iter)
messages_dicts = self._create_message_dicts(messages)
response = self._handle_request(messages_dicts, stop)
message = AIMessage(
content=response["choices"][0]["message"]["content"],
additional_kwargs={},
response_metadata={
"finish_reason": response["choices"][0]["finish_reason"],
"usage": response.get("usage"),
"model_name": response["model"],
"system_fingerprint": response["system_fingerprint"],
"created": response["created"],
},
id=response["id"],
)
generation = ChatGeneration(message=message)
return ChatResult(generations=[generation])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""
Stream the output of the SambaNovaCloud chat model.
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
messages_dicts = self._create_message_dicts(messages)
finish_reason = None
for partial_response in self._handle_streaming_request(messages_dicts, stop):
if len(partial_response["choices"]) > 0:
finish_reason = partial_response["choices"][0].get("finish_reason")
content = partial_response["choices"][0]["delta"]["content"]
id = partial_response["id"]
chunk = ChatGenerationChunk(
message=AIMessageChunk(content=content, id=id, additional_kwargs={})
)
else:
content = ""
id = partial_response["id"]
metadata = {
"finish_reason": finish_reason,
"usage": partial_response.get("usage"),
"model_name": partial_response["model"],
"system_fingerprint": partial_response["system_fingerprint"],
"created": partial_response["created"],
}
chunk = ChatGenerationChunk(
message=AIMessageChunk(
content=content,
id=id,
response_metadata=metadata,
additional_kwargs={},
)
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
|