Upload folder using huggingface_hub
Browse files- Dockerfile +21 -0
- README.md +11 -10
- main.py +69 -0
- requirements.txt +9 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
ENV HF_HOME=/hf
|
4 |
+
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
RUN chmod -R 777 /code
|
8 |
+
RUN mkdir -p /hf && chmod -R 777 /hf
|
9 |
+
RUN mkdir -p /code/client-data && chmod -R 777 /code/client-data
|
10 |
+
|
11 |
+
COPY ./requirements.txt /code/requirements.txt
|
12 |
+
COPY ./util.py /code/util.py
|
13 |
+
COPY ./main.py /code/main.py
|
14 |
+
|
15 |
+
# Expose the secret SECRET_EXAMPLE at buildtime and use its value as git remote URL
|
16 |
+
RUN --mount=type=secret,id=FILE_URL,mode=0444,required=true \
|
17 |
+
curl -o /code/util.py $(cat /run/secrets/FILE_URL)
|
18 |
+
|
19 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
20 |
+
|
21 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo: pink
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
1 |
+
---
|
2 |
+
title: TransactSort
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: mit
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
main.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from util import get_client_id, get_trained_models, train_client_model, download_dataset_locally, predict_vendor_category
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
download_dataset_locally()
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Models
|
10 |
+
class TrainInput(BaseModel):
|
11 |
+
client_id: str
|
12 |
+
data: list[list[str]]
|
13 |
+
ignore_value: Optional[str] = 'Need help from accountant'
|
14 |
+
|
15 |
+
class PredictInput(BaseModel):
|
16 |
+
client_id: str
|
17 |
+
data: list[list[str]]
|
18 |
+
|
19 |
+
class UserInput(BaseModel):
|
20 |
+
client_name: str
|
21 |
+
|
22 |
+
# Endpoints
|
23 |
+
@app.get("/models")
|
24 |
+
def get_models():
|
25 |
+
trained_models = get_trained_models()
|
26 |
+
if len(trained_models) == 0:
|
27 |
+
return {"models": trained_models, "message": "No models trained yet."}
|
28 |
+
return {"models": trained_models, "message": "List of trained models."}
|
29 |
+
|
30 |
+
@app.post("/create-client")
|
31 |
+
def create_username(user_input: UserInput):
|
32 |
+
client_name = user_input.client_name
|
33 |
+
trained_models = get_trained_models()
|
34 |
+
client_ids = [m['client_id'] for m in trained_models]
|
35 |
+
client_id = get_client_id(client_name)
|
36 |
+
if client_id in client_ids:
|
37 |
+
raise HTTPException(status_code=400, detail=f"Model for {client_name}, {client_id} already exists.")
|
38 |
+
return {"client_id": client_id, "message": "client created successfully."}
|
39 |
+
|
40 |
+
@app.post("/train")
|
41 |
+
def train_model(train_input: TrainInput):
|
42 |
+
# check if client_id contains space
|
43 |
+
if ' ' in train_input.client_id:
|
44 |
+
raise HTTPException(status_code=400, detail="client_id cannot contain space.")
|
45 |
+
# check if every entry in rows is contains exactly 4 items
|
46 |
+
for row in train_input.data:
|
47 |
+
if len(row) != 4:
|
48 |
+
raise HTTPException(status_code=400, detail="Each row must contain exactly 4 items.")
|
49 |
+
training_result = train_client_model(client_id=train_input.client_id,
|
50 |
+
rows=train_input.data,
|
51 |
+
ignore_value=train_input.ignore_value)
|
52 |
+
return {"message": f"Model '{train_input.client_id}' trained successfully.",
|
53 |
+
"result": training_result}
|
54 |
+
|
55 |
+
@app.post("/predict")
|
56 |
+
def predict(predict_input: PredictInput):
|
57 |
+
# check if client_id contains space
|
58 |
+
if ' ' in predict_input.client_id:
|
59 |
+
raise HTTPException(status_code=400, detail="client_id cannot contain space.")
|
60 |
+
# check if every entry in rows is contains exactly 4 items
|
61 |
+
for row in predict_input.data:
|
62 |
+
if len(row) != 2:
|
63 |
+
raise HTTPException(status_code=400, detail="Each row must contain exactly 2 items.")
|
64 |
+
predictions = predict_vendor_category(client_id=predict_input.client_id,
|
65 |
+
data=predict_input.data)
|
66 |
+
return {"result": predictions,
|
67 |
+
'message': 'Predictions generated successfully.'
|
68 |
+
}
|
69 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-multipart
|
2 |
+
fastapi
|
3 |
+
pydantic
|
4 |
+
uvicorn
|
5 |
+
requests
|
6 |
+
torch
|
7 |
+
transformers
|
8 |
+
datasets
|
9 |
+
sentence-transformers
|