import os import torch import gradio as gr from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor device = 'cuda' if torch.cuda.is_available() else 'cpu' processor = AutoProcessor.from_pretrained("microsoft/git-base") model = AutoModelForCausalLM.from_pretrained("sam749/sd-portrait-caption").to(device) def generate_captions(images, max_length=200): # prepare image for the model inputs = processor(images=images, return_tensors="pt").to(device) pixel_values = inputs.pixel_values generated_ids = model.generate(pixel_values=pixel_values, max_length=max_length) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True) return generated_caption def generate_caption(image, max_length=200): return generate_captions([image], max_length)[0] image_input = gr.Image(type="pil", label="Upload Image", height=400) max_length_slider = gr.Slider(minimum=10, maximum=400, value=200, step=8, label="Max Length") caption_output = gr.Textbox(label="Generated Caption") demo = gr.Interface( fn=generate_caption, inputs=[image_input, max_length_slider], outputs=caption_output, theme="gradio/monochrome", title="Stable Diffusion Portrait Captioner", allow_flagging="never" ) if __name__ == "__main__": demo.launch()