File size: 1,470 Bytes
3442a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import torch
import gradio as gr
from PIL import Image
from transformers import AutoModelForCausalLM,AutoProcessor

device = 'cuda' if torch.cuda.is_available() else 'cpu'

processor = AutoProcessor.from_pretrained("microsoft/git-base")
model = AutoModelForCausalLM.from_pretrained("sam749/sd-portrait-caption").to(device)

def generate_captions(images:[Image],max_length=200):
  # prepare image for the model
  inputs = processor(images=images, return_tensors="pt").to(device)
  pixel_values = inputs.pixel_values
  generated_ids = model.generate(pixel_values=pixel_values, max_length=max_length)
  generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)
  return generated_caption

def generate_caption(image,max_length=200):
  return generate_captions(image,max_length)[0]


inputs = [
    gr.Image(sources=["upload", "clipboard"],
             height=400,
             type="pil"
             ),
    gr.Slider(minimum=10,
              maximum=400,
              value=200,
              label='max length',
              step=8,
              )
]
outputs = [
    gr.Text(label="Generated Caption"),
]

demo = gr.Interface(
    fn=generate_caption,
    inputs=inputs,
    outputs=outputs,
    title="Stable Diffusion Portrait Captioner",
    theme="gradio/monochrome",
    api_name="caption",
    submit_btn=gr.Button("caption it", variant="primary"),
    allow_flagging="never",
)
demo.queue(
    max_size=10,
)

demo.launch()