import os import subprocess import glob import numpy as np from PIL import Image # Function to install missing dependencies def install_dependencies(): packages = [ "groq", "transformers", "diffusers", "gradio" ] for package in packages: try: __import__(package) except ImportError: subprocess.check_call(["pip", "install", package]) # Install dependencies install_dependencies() # Import dependencies from groq import Groq from transformers import pipeline from diffusers import StableDiffusionPipeline import gradio as gr # Validate GROQ_API_KEY environment variable def validate_groq_api_key(): if not os.environ.get("GROQ_API_KEY"): # Set default API key if not present os.environ["GROQ_API_KEY"] = "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" # Initialize Groq Client validate_groq_api_key() client = Groq( api_key=os.environ.get("GROQ_API_KEY"), ) # Example Groq Usage def fetch_groq_completion(prompt): chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": prompt, } ], model="llama3-8b-8192", stream=False, ) return chat_completion.choices[0].message.content # Text Understanding with Hugging Face Transformers def extract_key_entities(text): ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english") entities = ner_pipeline(text) return [entity["word"] for entity in entities] def summarize_text(text): summarizer = pipeline("summarization", model="facebook/bart-large-cnn") summary = summarizer(text, max_length=50, min_length=10, do_sample=False) return summary[0]['summary_text'] # Frame Generation using Stable Diffusion def generate_frames(prompts, output_dir="frames"): os.makedirs(output_dir, exist_ok=True) model_id = "CompVis/stable-diffusion-v1-4" sd_pipeline = StableDiffusionPipeline.from_pretrained(model_id) frames = [] for i, prompt in enumerate(prompts): image = sd_pipeline(prompt).images[0] frame_path = os.path.join(output_dir, f"frame_{i:04d}.png") image.save(frame_path) frames.append(frame_path) return frames # Video Stitching with FFmpeg def create_video_from_frames(frames_dir, output_video="output.mp4", fps=24): frame_pattern = os.path.join(frames_dir, "frame_%04d.png") command = [ "ffmpeg", "-y", "-framerate", str(fps), "-i", frame_pattern, "-c:v", "libx264", "-pix_fmt", "yuv420p", output_video ] subprocess.run(command, check=True) return output_video # Gradio Interface for Final Output def generate_video_interface(prompt): # Step 1: Fetch understanding from Groq groq_response = fetch_groq_completion(prompt) # Step 2: Extract entities and summarize key_entities = extract_key_entities(groq_response) summary = summarize_text(groq_response) # Step 3: Generate frames prompts = [f"{entity}, cinematic, ultra-realistic" for entity in key_entities] frame_dir = "frames" generate_frames(prompts, output_dir=frame_dir) # Step 4: Create video video_path = create_video_from_frames(frame_dir) return video_path # Launch Gradio App def gradio_ui(): interface = gr.Interface( fn=generate_video_interface, inputs="text", outputs="video", title="Text-to-Video Generator", description="Generate videos from text descriptions using open-source AI tools." ) interface.launch() if __name__ == "__main__": gradio_ui()