Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
-
import
|
2 |
-
import base64
|
3 |
-
import io
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
-
from scipy.io import wavfile
|
8 |
-
from scipy.signal import butter, lfilter
|
9 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
10 |
from vosk import Model, KaldiRecognizer
|
11 |
-
import pyaudio
|
12 |
-
import json
|
13 |
-
import sounddevice as sd
|
14 |
from TTS.api import TTS
|
|
|
15 |
|
16 |
class VoiceAssistant:
|
17 |
def __init__(self):
|
@@ -24,7 +19,7 @@ class VoiceAssistant:
|
|
24 |
self.p = pyaudio.PyAudio()
|
25 |
self.stream = self.p.open(format=pyaudio.paFloat32, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
|
26 |
self.keyword = "jarvis"
|
27 |
-
|
28 |
def vad_collector(self, vad_threshold=0.5):
|
29 |
audio_chunks, keyword_detected = [], False
|
30 |
while True:
|
@@ -37,54 +32,55 @@ class VoiceAssistant:
|
|
37 |
recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
38 |
recognizer.AcceptWaveform(audio_chunk.tobytes())
|
39 |
result = json.loads(recognizer.Result())
|
40 |
-
|
41 |
if self.keyword.lower() in result.get('text', '').lower():
|
42 |
keyword_detected = True
|
43 |
break
|
44 |
|
45 |
if keyword_detected:
|
46 |
break
|
47 |
-
|
48 |
return audio_chunks, keyword_detected
|
49 |
-
|
50 |
def transcribe_audio(self, audio_chunks):
|
51 |
audio_data = np.concatenate(audio_chunks)
|
52 |
recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
53 |
recognizer.AcceptWaveform(audio_data.tobytes())
|
54 |
result = json.loads(recognizer.Result())
|
55 |
return result.get('text', '')
|
56 |
-
|
57 |
def generate_response(self, text):
|
58 |
return "Respuesta generada para: " + text
|
59 |
-
|
60 |
def text_to_speech(self, text):
|
61 |
output_path = "response.wav"
|
62 |
self.tts_model.tts_to_file(text=text, file_path=output_path)
|
63 |
return output_path
|
64 |
-
|
65 |
-
def run(self):
|
66 |
-
st.title("Asistente de Voz JARVIS")
|
67 |
-
|
68 |
-
if st.button("Iniciar Escucha"):
|
69 |
-
st.write("Esperando palabra clave 'JARVIS'...")
|
70 |
-
|
71 |
-
audio_chunks, keyword_detected = self.vad_collector()
|
72 |
-
|
73 |
-
if keyword_detected:
|
74 |
-
st.success("Palabra clave detectada. Procesando...")
|
75 |
-
|
76 |
-
transcribed_text = self.transcribe_audio(audio_chunks)
|
77 |
-
st.write(f"Texto transcrito: {transcribed_text}")
|
78 |
-
|
79 |
-
response = self.generate_response(transcribed_text)
|
80 |
-
st.write(f"Respuesta: {response}")
|
81 |
-
|
82 |
-
audio_path = self.text_to_speech(response)
|
83 |
-
st.audio(audio_path)
|
84 |
|
85 |
-
def
|
86 |
assistant = VoiceAssistant()
|
87 |
-
assistant.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
-
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
import json
|
5 |
+
import pyaudio
|
6 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
7 |
from vosk import Model, KaldiRecognizer
|
|
|
|
|
|
|
8 |
from TTS.api import TTS
|
9 |
+
from scipy.io import wavfile
|
10 |
|
11 |
class VoiceAssistant:
|
12 |
def __init__(self):
|
|
|
19 |
self.p = pyaudio.PyAudio()
|
20 |
self.stream = self.p.open(format=pyaudio.paFloat32, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
|
21 |
self.keyword = "jarvis"
|
22 |
+
|
23 |
def vad_collector(self, vad_threshold=0.5):
|
24 |
audio_chunks, keyword_detected = [], False
|
25 |
while True:
|
|
|
32 |
recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
33 |
recognizer.AcceptWaveform(audio_chunk.tobytes())
|
34 |
result = json.loads(recognizer.Result())
|
35 |
+
|
36 |
if self.keyword.lower() in result.get('text', '').lower():
|
37 |
keyword_detected = True
|
38 |
break
|
39 |
|
40 |
if keyword_detected:
|
41 |
break
|
42 |
+
|
43 |
return audio_chunks, keyword_detected
|
44 |
+
|
45 |
def transcribe_audio(self, audio_chunks):
|
46 |
audio_data = np.concatenate(audio_chunks)
|
47 |
recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
48 |
recognizer.AcceptWaveform(audio_data.tobytes())
|
49 |
result = json.loads(recognizer.Result())
|
50 |
return result.get('text', '')
|
51 |
+
|
52 |
def generate_response(self, text):
|
53 |
return "Respuesta generada para: " + text
|
54 |
+
|
55 |
def text_to_speech(self, text):
|
56 |
output_path = "response.wav"
|
57 |
self.tts_model.tts_to_file(text=text, file_path=output_path)
|
58 |
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
def process_audio():
|
61 |
assistant = VoiceAssistant()
|
62 |
+
audio_chunks, keyword_detected = assistant.vad_collector()
|
63 |
+
|
64 |
+
if keyword_detected:
|
65 |
+
transcribed_text = assistant.transcribe_audio(audio_chunks)
|
66 |
+
response = assistant.generate_response(transcribed_text)
|
67 |
+
audio_path = assistant.text_to_speech(response)
|
68 |
+
return transcribed_text, response, audio_path
|
69 |
+
else:
|
70 |
+
return "No se detect贸 la palabra clave.", "", ""
|
71 |
+
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=process_audio,
|
74 |
+
inputs=[],
|
75 |
+
outputs=[
|
76 |
+
gr.Textbox(label="Texto Transcrito"),
|
77 |
+
gr.Textbox(label="Respuesta Generada"),
|
78 |
+
gr.Audio(label="Audio Generado")
|
79 |
+
],
|
80 |
+
live=True,
|
81 |
+
title="Asistente de Voz JARVIS",
|
82 |
+
description="Presiona el bot贸n para comenzar la escucha y decir 'JARVIS'."
|
83 |
+
)
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
+
iface.launch()
|