Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import base64
|
3 |
import io
|
4 |
-
import torch
|
5 |
-
import os
|
6 |
from huggingface_hub import InferenceClient
|
7 |
-
from
|
|
|
8 |
import speech_recognition as sr
|
9 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
10 |
-
import numpy as np
|
11 |
-
from scipy.io.wavfile import write
|
12 |
-
from pydub import AudioSegment
|
13 |
|
14 |
-
|
15 |
-
tokenizer = T5Tokenizer.from_pretrained("facebook/mms-tts-spa")
|
16 |
-
|
17 |
-
pre_prompt_text = "Eres una IA conductual, tus respuestas deber谩n ser breves, est贸icas y humanistas."
|
18 |
|
19 |
if "history" not in st.session_state:
|
20 |
st.session_state.history = []
|
@@ -32,14 +24,14 @@ def recognize_speech(audio_data, show_messages=True):
|
|
32 |
try:
|
33 |
audio_text = recognizer.recognize_google(audio, language="es-ES")
|
34 |
if show_messages:
|
35 |
-
st.subheader("
|
36 |
st.write(audio_text)
|
37 |
-
st.success("
|
38 |
except sr.UnknownValueError:
|
39 |
-
st.warning("
|
40 |
audio_text = ""
|
41 |
except sr.RequestError:
|
42 |
-
st.error("
|
43 |
audio_text = ""
|
44 |
|
45 |
return audio_text
|
@@ -58,16 +50,41 @@ def format_prompt(message, history):
|
|
58 |
prompt += f"[INST] {message} [/INST]"
|
59 |
return prompt
|
60 |
|
61 |
-
def generate(audio_text, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
formatted_prompt = format_prompt(audio_text, history)
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def main():
|
70 |
-
audio_data = audiorecorder("
|
71 |
|
72 |
if not audio_data.empty():
|
73 |
st.audio(audio_data.export().read(), format="audio/wav")
|
@@ -75,24 +92,12 @@ def main():
|
|
75 |
audio_text = recognize_speech("audio.wav")
|
76 |
|
77 |
if audio_text:
|
78 |
-
audio_file = generate(audio_text, history=st.session_state.history)
|
79 |
|
80 |
if audio_file is not None:
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
# Convertir el archivo WAV a MP3 utilizando pydub
|
85 |
-
audio = AudioSegment.from_wav("output.wav")
|
86 |
-
audio.export("output.mp3", format="mp3")
|
87 |
-
|
88 |
-
# Leer el archivo MP3 y mostrarlo en Streamlit
|
89 |
-
with open("output.mp3", "rb") as file:
|
90 |
-
audio_bytes = file.read()
|
91 |
-
st.audio(audio_bytes, format="audio/mp3")
|
92 |
-
|
93 |
-
# Eliminar archivos temporales (opcional)
|
94 |
-
os.remove("output.wav")
|
95 |
-
os.remove("output.mp3")
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import base64
|
3 |
import io
|
|
|
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
+
from gtts import gTTS
|
6 |
+
import audiorecorder
|
7 |
import speech_recognition as sr
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
pre_prompt_text = "You are a behavioral AI, your answers should be brief, stoic and humanistic."
|
|
|
|
|
|
|
10 |
|
11 |
if "history" not in st.session_state:
|
12 |
st.session_state.history = []
|
|
|
24 |
try:
|
25 |
audio_text = recognizer.recognize_google(audio, language="es-ES")
|
26 |
if show_messages:
|
27 |
+
st.subheader("Recognized text:")
|
28 |
st.write(audio_text)
|
29 |
+
st.success("Voice Recognized.")
|
30 |
except sr.UnknownValueError:
|
31 |
+
st.warning("The audio could not be recognized. Did you try to record something?")
|
32 |
audio_text = ""
|
33 |
except sr.RequestError:
|
34 |
+
st.error("Push/Talk to start!")
|
35 |
audio_text = ""
|
36 |
|
37 |
return audio_text
|
|
|
50 |
prompt += f"[INST] {message} [/INST]"
|
51 |
return prompt
|
52 |
|
53 |
+
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
|
54 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
55 |
+
|
56 |
+
temperature = float(temperature) if temperature is not None else 0.9
|
57 |
+
temperature = max(temperature, 1e-2)
|
58 |
+
top_p = float(top_p)
|
59 |
+
|
60 |
+
generate_kwargs = dict(
|
61 |
+
temperature=temperature,
|
62 |
+
max_new_tokens=max_new_tokens,
|
63 |
+
top_p=top_p,
|
64 |
+
repetition_penalty=repetition_penalty,
|
65 |
+
do_sample=True,
|
66 |
+
seed=42)
|
67 |
+
|
68 |
formatted_prompt = format_prompt(audio_text, history)
|
69 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
70 |
+
response = ""
|
71 |
+
|
72 |
+
for response_token in stream:
|
73 |
+
response += response_token.token.text
|
74 |
+
|
75 |
+
response = ' '.join(response.split()).replace('</s>', '')
|
76 |
+
audio_file = text_to_speech(response)
|
77 |
+
return response, audio_file
|
78 |
+
|
79 |
+
def text_to_speech(text):
|
80 |
+
tts = gTTS(text=text, lang='es')
|
81 |
+
audio_fp = io.BytesIO()
|
82 |
+
tts.write_to_fp(audio_fp)
|
83 |
+
audio_fp.seek(0)
|
84 |
+
return audio_fp
|
85 |
|
86 |
def main():
|
87 |
+
audio_data = audiorecorder.audiorecorder("Push to Talk", "Stop Recording...")
|
88 |
|
89 |
if not audio_data.empty():
|
90 |
st.audio(audio_data.export().read(), format="audio/wav")
|
|
|
92 |
audio_text = recognize_speech("audio.wav")
|
93 |
|
94 |
if audio_text:
|
95 |
+
output, audio_file = generate(audio_text, history=st.session_state.history)
|
96 |
|
97 |
if audio_file is not None:
|
98 |
+
st.markdown(
|
99 |
+
f"""<audio autoplay="autoplay" controls="controls" src="data:audio/mp3;base64,{base64.b64encode(audio_file.read()).decode()}" type="audio/mp3" id="audio_player"></audio>""",
|
100 |
+
unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
+
main()
|