Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import base64
|
|
6 |
import io
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from gtts import gTTS
|
|
|
9 |
|
10 |
st.title("Chatbot de Voz a Voz")
|
11 |
|
@@ -22,6 +23,7 @@ channels = 1
|
|
22 |
seconds_per_frame = frames_per_buffer / audio_rate
|
23 |
vad_threshold = 0.5
|
24 |
|
|
|
25 |
def callback(data):
|
26 |
try:
|
27 |
audio_array = np.frombuffer(data, dtype=np.int16)
|
@@ -35,6 +37,14 @@ def callback(data):
|
|
35 |
except Exception as e:
|
36 |
st.error(f"Error durante la captura de audio: {e}")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def format_prompt(message, history):
|
39 |
prompt = "<s>"
|
40 |
|
@@ -45,6 +55,7 @@ def format_prompt(message, history):
|
|
45 |
prompt += f"[INST] {message} [/INST]"
|
46 |
return prompt
|
47 |
|
|
|
48 |
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
|
49 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
50 |
|
@@ -73,6 +84,7 @@ def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.
|
|
73 |
audio_file = text_to_speech(response, speed=1.3)
|
74 |
return response, audio_file
|
75 |
|
|
|
76 |
def text_to_speech(text, speed=1.3):
|
77 |
tts = gTTS(text=text, lang='es')
|
78 |
audio_fp = io.BytesIO()
|
@@ -85,6 +97,7 @@ def text_to_speech(text, speed=1.3):
|
|
85 |
modified_audio_fp.seek(0)
|
86 |
return modified_audio_fp
|
87 |
|
|
|
88 |
def save_audio_buffer():
|
89 |
if buffer:
|
90 |
audio_array = np.concatenate(buffer)
|
@@ -96,9 +109,14 @@ def save_audio_buffer():
|
|
96 |
)
|
97 |
|
98 |
st.audio(audio_array, format="audio/wav", channels=channels)
|
|
|
|
|
|
|
|
|
99 |
|
100 |
buffer.clear()
|
101 |
|
|
|
102 |
def main():
|
103 |
st.title("Chatbot de Voz a Voz")
|
104 |
|
|
|
6 |
import io
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from gtts import gTTS
|
9 |
+
import speech_recognition as sr
|
10 |
|
11 |
st.title("Chatbot de Voz a Voz")
|
12 |
|
|
|
23 |
seconds_per_frame = frames_per_buffer / audio_rate
|
24 |
vad_threshold = 0.5
|
25 |
|
26 |
+
#abrir microfono
|
27 |
def callback(data):
|
28 |
try:
|
29 |
audio_array = np.frombuffer(data, dtype=np.int16)
|
|
|
37 |
except Exception as e:
|
38 |
st.error(f"Error durante la captura de audio: {e}")
|
39 |
|
40 |
+
# voz a texto
|
41 |
+
def transcribe_audio(audio_data):
|
42 |
+
recognizer = sr.Recognizer()
|
43 |
+
audio_chunk = sr.AudioData(audio_data, sample_rate=audio_rate, sample_width=2) # 16-bit PCM audio
|
44 |
+
text = recognizer.recognize_google(audio_chunk, language="es-ES")
|
45 |
+
return text
|
46 |
+
|
47 |
+
# entrada al modelo de lenguaje
|
48 |
def format_prompt(message, history):
|
49 |
prompt = "<s>"
|
50 |
|
|
|
55 |
prompt += f"[INST] {message} [/INST]"
|
56 |
return prompt
|
57 |
|
58 |
+
#generaci贸n de respuesta
|
59 |
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
|
60 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
61 |
|
|
|
84 |
audio_file = text_to_speech(response, speed=1.3)
|
85 |
return response, audio_file
|
86 |
|
87 |
+
#respuesta texto a voz
|
88 |
def text_to_speech(text, speed=1.3):
|
89 |
tts = gTTS(text=text, lang='es')
|
90 |
audio_fp = io.BytesIO()
|
|
|
97 |
modified_audio_fp.seek(0)
|
98 |
return modified_audio_fp
|
99 |
|
100 |
+
#captura de audio
|
101 |
def save_audio_buffer():
|
102 |
if buffer:
|
103 |
audio_array = np.concatenate(buffer)
|
|
|
109 |
)
|
110 |
|
111 |
st.audio(audio_array, format="audio/wav", channels=channels)
|
112 |
+
transcribed_text = transcribe_audio(audio_array.tobytes())
|
113 |
+
st.subheader("Texto Transcrito:")
|
114 |
+
st.write(transcribed_text)
|
115 |
+
output, audio_file = generate(transcribed_text, history=st.session_state.history)
|
116 |
|
117 |
buffer.clear()
|
118 |
|
119 |
+
#interfaz de usuario
|
120 |
def main():
|
121 |
st.title("Chatbot de Voz a Voz")
|
122 |
|