Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
from scipy.io import wavfile
|
10 |
-
|
11 |
-
class VoiceAssistant:
|
12 |
-
def __init__(self):
|
13 |
-
self.vad_model = torch.hub.load('snakers4/silero-vad', 'silero_vad', force_reload=True)
|
14 |
-
model_path = hf_hub_download(repo_id="alphacep/vosk-model-small-es", filename="model.zip")
|
15 |
-
self.vosk_model = Model(model_path)
|
16 |
-
self.tts_model = TTS(model_name="tts_models/es/css10/full-dataset", progress_bar=False)
|
17 |
-
self.sample_rate = 16000
|
18 |
-
self.chunk_size = 480
|
19 |
-
self.p = pyaudio.PyAudio()
|
20 |
-
self.stream = self.p.open(format=pyaudio.paFloat32, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
|
21 |
-
self.keyword = "jarvis"
|
22 |
-
|
23 |
-
def vad_collector(self, vad_threshold=0.5):
|
24 |
-
audio_chunks, keyword_detected = [], False
|
25 |
-
while True:
|
26 |
-
data = self.stream.read(self.chunk_size)
|
27 |
-
audio_chunk = np.frombuffer(data, dtype=np.float32)
|
28 |
-
speech_prob = self.vad_model(torch.from_numpy(audio_chunk), self.sample_rate).item()
|
29 |
-
|
30 |
-
if speech_prob > vad_threshold:
|
31 |
-
audio_chunks.append(audio_chunk)
|
32 |
-
recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
33 |
-
recognizer.AcceptWaveform(audio_chunk.tobytes())
|
34 |
-
result = json.loads(recognizer.Result())
|
35 |
-
|
36 |
-
if self.keyword.lower() in result.get('text', '').lower():
|
37 |
-
keyword_detected = True
|
38 |
-
break
|
39 |
-
|
40 |
-
if keyword_detected:
|
41 |
-
break
|
42 |
-
|
43 |
-
return audio_chunks, keyword_detected
|
44 |
-
|
45 |
-
def transcribe_audio(self, audio_chunks):
|
46 |
-
audio_data = np.concatenate(audio_chunks)
|
47 |
-
recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
48 |
-
recognizer.AcceptWaveform(audio_data.tobytes())
|
49 |
-
result = json.loads(recognizer.Result())
|
50 |
-
return result.get('text', '')
|
51 |
-
|
52 |
-
def generate_response(self, text):
|
53 |
-
return "Respuesta generada para: " + text
|
54 |
-
|
55 |
-
def text_to_speech(self, text):
|
56 |
-
output_path = "response.wav"
|
57 |
-
self.tts_model.tts_to_file(text=text, file_path=output_path)
|
58 |
-
return output_path
|
59 |
-
|
60 |
-
def process_audio():
|
61 |
-
assistant = VoiceAssistant()
|
62 |
-
audio_chunks, keyword_detected = assistant.vad_collector()
|
63 |
-
|
64 |
-
if keyword_detected:
|
65 |
-
transcribed_text = assistant.transcribe_audio(audio_chunks)
|
66 |
-
response = assistant.generate_response(transcribed_text)
|
67 |
-
audio_path = assistant.text_to_speech(response)
|
68 |
-
return transcribed_text, response, audio_path
|
69 |
-
else:
|
70 |
-
return "No se detect贸 la palabra clave.", "", ""
|
71 |
-
|
72 |
-
iface = gr.Interface(
|
73 |
-
fn=process_audio,
|
74 |
-
inputs=[],
|
75 |
-
outputs=[
|
76 |
-
gr.Textbox(label="Texto Transcrito"),
|
77 |
-
gr.Textbox(label="Respuesta Generada"),
|
78 |
-
gr.Audio(label="Audio Generado")
|
79 |
-
],
|
80 |
-
live=True,
|
81 |
-
title="Asistente de Voz JARVIS",
|
82 |
-
description="Presiona el bot贸n para comenzar la escucha y decir 'JARVIS'."
|
83 |
-
)
|
84 |
-
|
85 |
-
if __name__ == "__main__":
|
86 |
-
iface.launch()
|
|
|
1 |
+
streamlit==1.29.0
|
2 |
+
torch==2.1.2
|
3 |
+
numpy==1.22.0
|
4 |
+
huggingface_hub==0.20.3
|
5 |
+
transformers==4.36.2
|
6 |
+
sounddevice==0.4.6
|
7 |
+
TTS==0.22.0
|
8 |
+
pyaudio==0.2.14
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|