Spaces:
Sleeping
Sleeping
import streamlit as st | |
import base64 | |
import io | |
from huggingface_hub import InferenceClient | |
from gtts import gTTS | |
from audiorecorder import audiorecorder | |
import speech_recognition as sr | |
pre_prompt_text = "You are a behavioral AI, your answers should be brief, stoic and humanistic." | |
if "history" not in st.session_state: | |
st.session_state.history = [] | |
if "pre_prompt_sent" not in st.session_state: | |
st.session_state.pre_prompt_sent = False | |
def recognize_speech(audio_data, show_messages=True): | |
recognizer = sr.Recognizer() | |
audio_recording = sr.AudioFile(audio_data) | |
with audio_recording as source: | |
audio = recognizer.record(source) | |
try: | |
audio_text = recognizer.recognize_google(audio, language="es-ES") | |
if show_messages: | |
st.subheader("Recognized text:") | |
st.write(audio_text) | |
st.success("Voice Recognized.") | |
except sr.UnknownValueError: | |
st.warning("The audio could not be recognized. Did you try to record something?") | |
audio_text = "" | |
except sr.RequestError: | |
st.error("Push/Talk to start!") | |
audio_text = "" | |
return audio_text | |
def format_prompt(message, history): | |
prompt = "<s>" | |
if not st.session_state.pre_prompt_sent: | |
prompt += f"[INST] {pre_prompt_text} [/INST]" | |
st.session_state.pre_prompt_sent = True | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
temperature = float(temperature) if temperature is not None else 0.9 | |
temperature = max(temperature, 1e-2) | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42) | |
formatted_prompt = format_prompt(audio_text, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) | |
response = "" | |
for response_token in stream: | |
response += response_token.token.text | |
response = ' '.join(response.split()).replace('</s>', '') | |
audio_file = text_to_speech(response) | |
return response, audio_file | |
def text_to_speech(text): | |
tts = gTTS(text=text, lang='es') | |
audio_fp = io.BytesIO() | |
tts.write_to_fp(audio_fp) | |
audio_fp.seek(0) | |
return audio_fp | |
def main(): | |
audio_data = audiorecorder("Push to Talk", "Stop Recording...") | |
if not audio_data.empty(): | |
st.audio(audio_data.export().read(), format="audio/wav") | |
audio_data.export("audio.wav", format="wav") | |
audio_text = recognize_speech("audio.wav") | |
if audio_text: | |
output, audio_file = generate(audio_text, history=st.session_state.history) | |
if audio_file is not None: | |
st.markdown( | |
f"""<audio autoplay="autoplay" controls="controls" src="data:audio/mp3;base64,{base64.b64encode(audio_file.read()).decode()}" type="audio/mp3" id="audio_player"></audio>""", | |
unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |