xaman4 / app.py
salomonsky's picture
Update app.py
9b3d3a2 verified
raw
history blame
4.39 kB
import streamlit as st
import base64
import io
from huggingface_hub import InferenceClient
from gtts import gTTS
from pydub import AudioSegment
from pydub.playback import play
from streamlit_webrtc import webrtc_streamer, AudioProcessorBase
import cv2
import numpy as np
import speech_recognition as sr
import subprocess
if "history" not in st.session_state:
st.session_state.history = []
recognizer = sr.Recognizer()
# Reconociendo voz en tiempo real
def recognize_speech_with_vad(audio_data, show_messages=True):
try:
audio_text = recognizer.recognize_google(audio_data, language="es-ES")
if show_messages:
st.subheader("Texto Reconocido:")
st.write(audio_text)
except sr.UnknownValueError:
st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?")
audio_text = ""
except sr.RequestError:
st.error("Hablame para comenzar!")
audio_text = ""
return audio_text
# Procesador de voice activity detection con streamlit_webrtc
class VADProcessor(AudioProcessorBase):
def __init__(self):
self.buffer = np.zeros((0,))
self.vad_active = True
def recv(self, audio_data):
if self.vad_active:
audio_array = np.frombuffer(audio_data, dtype=np.int16)
self.buffer = np.concatenate((self.buffer, audio_array), axis=None)
if len(self.buffer) >= 44100 * 5: # 5 seconds of audio
st.audio(self.buffer, format="audio/wav")
audio_text = recognize_speech_with_vad(self.buffer)
if audio_text:
st.success("Frase detectada. Procesando audio...")
output, audio_file = generate(audio_text, history=st.session_state.history)
if audio_file is not None:
play(audio_file)
# Desactiva el VAD después de detectar una frase
self.vad_active = False
self.buffer = np.zeros((0,))
# Preparando entrada para el modelo de lenguaje
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
# Generando respuesta en texto
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
temperature = float(temperature) if temperature is not None else 0.9
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(audio_text, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
response = ""
for response_token in stream:
response += response_token.token.text
response = ' '.join(response.split()).replace('</s>', '')
audio_file = text_to_speech(response, speed=1.3)
return response, audio_file
# Texto a voz
def text_to_speech(text, speed=1.3):
tts = gTTS(text=text, lang='es')
audio_fp = io.BytesIO()
tts.write_to_fp(audio_fp)
audio_fp.seek(0)
audio = AudioSegment.from_file(audio_fp, format="mp3")
modified_speed_audio = audio.speedup(playback_speed=speed)
modified_audio_fp = io.BytesIO()
modified_speed_audio.export(modified_audio_fp, format="mp3")
modified_audio_fp.seek(0)
return modified_audio_fp
# Reproductor de texto a voz
def audio_player_markup(audio_file):
return f"""
<audio autoplay="autoplay" controls="controls" src="data:audio/mp3;base64,{base64.b64encode(audio_file.read()).decode()}" type="audio/mp3" id="audio_player"></audio>
"""
# Interfaz de usuario con streamlit_webrtc
def main():
st.title("Chatbot de Voz a Voz")
webrtc_ctx = webrtc_streamer(
key="vad",
audio_processor_factory=VADProcessor,
async_processing=True,
media_stream_constraints={"video": False, "audio": True},
)
if __name__ == "__main__":
main()