xaman4 / app.py
salomonsky's picture
Update app.py
3d98a19 verified
raw
history blame
3.07 kB
import streamlit as st
from huggingface_hub import InferenceClient
from gtts import gTTS
# Inicializar el cliente de inferencia
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Definir el prompt del sistema
system_prompt = "Tu nombre es Xaman 3.0"
system_prompt_sent = False
# Funci贸n para formatear el prompt
def format_prompt(message, history):
global system_prompt_sent
prompt = "<s>"
if history is not None and isinstance(history, list):
if not any(f"[INST] {system_prompt} [/INST]" in user_prompt for user_prompt, _ in history):
prompt += f"[INST] {system_prompt} [/INST]"
system_prompt_sent = True
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
# Funci贸n para convertir texto a audio
def text_to_speech(text):
tts = gTTS(text=text, lang='es')
tts.save('output.mp3')
return 'output.mp3'
# Funci贸n para generar respuesta
def generate(
user_input, history, temperature=None, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0,
):
global system_prompt_sent
temperature = float(temperature) if temperature is not None else 0.9
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(user_input, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
response = ""
for response_token in stream:
response += response_token.token.text
response = ' '.join(response.split()).replace('</s>', '')
# Mostrar respuesta en un 谩rea de texto
st.text_area("Bot:", value=response, height=200, key='response_area')
# Convertir respuesta a audio y reproducirlo
audio_file = text_to_speech(response)
st.audio(audio_file, format="audio/mp3", start_time=0, key='audio')
return response
# Inicializar historial si no existe
if "history" not in st.session_state:
st.session_state.history = []
# Interfaz de usuario con Streamlit
st.title("Chatbot Interactivo")
user_input = st.text_area(label="Usuario", value="Escribe aqu铆 tu mensaje", height=100)
# Mostrar historial de conversaci贸n
st.subheader("Historial de Conversaci贸n")
for user_prompt, bot_response in st.session_state.history:
st.write(f"Usuario: {user_prompt}")
st.write(f"Bot: {bot_response}")
st.markdown("---")
# Generar respuesta y actualizar historial
output = generate(user_input, history=st.session_state.history)
st.session_state.history.append((user_input, output))
# Reproducir respuesta en formato de audio
audio_file = text_to_speech(output)
st.audio(audio_file, format="audio/mp3", start_time=0, key='audio')