File size: 3,842 Bytes
4024bc6
 
 
3df1c4a
4024bc6
 
 
 
 
 
d99ff1c
4024bc6
 
 
3df1c4a
7a4f83c
4024bc6
 
 
 
 
 
 
d99ff1c
4024bc6
 
 
d99ff1c
4024bc6
 
 
 
 
 
 
 
d99ff1c
4024bc6
 
 
 
d99ff1c
4024bc6
 
 
 
 
 
 
 
 
 
 
d99ff1c
4024bc6
 
 
 
d99ff1c
4024bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d99ff1c
4024bc6
 
d99ff1c
 
 
4024bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import streamlit as st
import torch
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import pyaudio
import sounddevice as sd
from TTS.api import TTS

class VoiceAssistant:
    def __init__(self):
        # Cargar modelo Wav2Vec2 para reconocimiento de voz en espa帽ol
        self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53-spanish")
        self.model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53-spanish")
        
        # Cargar modelo TTS para s铆ntesis de voz en espa帽ol (modelo corregido)
        self.tts_model = TTS(model_name="microsoft/speecht5_tts", progress_bar=False)
        
        # Par谩metros de audio
        self.sample_rate = 16000
        self.chunk_size = 480
        self.p = pyaudio.PyAudio()
        self.stream = self.p.open(format=pyaudio.paFloat32, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
        
        # Palabras clave
        self.keyword_activation = "jarvis"
        self.keyword_deactivation = "detente"
        
        # Estado de escucha
        self.listening = False

    def vad_collector(self, vad_threshold=0.5):
        audio_chunks, keyword_detected = [], False
        while self.listening:
            data = self.stream.read(self.chunk_size)
            audio_chunk = np.frombuffer(data, dtype=np.float32)
            
            # Detectar palabra de activaci贸n
            if self.keyword_activation.lower() in str(audio_chunk).lower():
                keyword_detected = True
                break
            
            # Detectar palabra de desactivaci贸n
            if self.keyword_deactivation.lower() in str(audio_chunk).lower():
                self.listening = False
                break

            audio_chunks.append(audio_chunk)
        
        return audio_chunks, keyword_detected
    
    def transcribe_audio(self, audio_chunks):
        audio_data = np.concatenate(audio_chunks)
        
        # Procesar y transcribir el audio usando Wav2Vec2
        input_values = self.processor(audio_data, return_tensors="pt", sampling_rate=self.sample_rate).input_values
        with torch.no_grad():
            logits = self.model(input_values).logits
        
        # Decodificar la transcripci贸n
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = self.processor.decode(predicted_ids[0])
        
        return transcription
    
    def generate_response(self, text):
        return "Respuesta generada para: " + text
    
    def text_to_speech(self, text):
        output_path = "response.wav"
        self.tts_model.tts_to_file(text=text, file_path=output_path)
        return output_path
    
    def run(self):
        st.title("Asistente de Voz JARVIS")
        
        # Bot贸n para iniciar/desactivar la escucha
        if st.button("Iniciar/Detener Escucha"):
            self.listening = not self.listening
            st.write("Escucha activada." if self.listening else "Escucha desactivada.")
        
        # Realizar la transcripci贸n y s铆ntesis de voz si la escucha est谩 activada
        if self.listening:
            audio_chunks, keyword_detected = self.vad_collector()
            
            if keyword_detected:
                st.success("Palabra clave 'JARVIS' detectada. Procesando...")
                transcribed_text = self.transcribe_audio(audio_chunks)
                st.write(f"Texto transcrito: {transcribed_text}")
                
                response = self.generate_response(transcribed_text)
                st.write(f"Respuesta: {response}")
                
                audio_path = self.text_to_speech(response)
                st.audio(audio_path)

def main():
    assistant = VoiceAssistant()
    assistant.run()

if __name__ == "__main__":
    main()