Spaces:
Sleeping
Sleeping
File size: 1,723 Bytes
8160127 a0a031a 5100159 8160127 d9f7657 0d81ce3 a0a031a 03420a2 a0a031a 0d81ce3 d9f7657 a0a031a 5100159 a0a031a 5c113c1 a0a031a 25fc6c4 5e79494 bd16270 5e79494 a0a031a 5c113c1 ecb38ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_prompt_set = False
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, system_prompt="Soy Maya 3.0 tu asistente experto: abogacía, política, historia, economía, nutriología, filosofía, sicología, ecología y programación.", temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0,
):
global system_prompt_set
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield output
return output
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", height=700),
concurrency_limit=2,
theme="glass",
retry_btn=None,
undo_btn=None,
clear_btn=None,
submit_btn="Enviar",
)
chat_interface.launch(show_api=False) |