Spaces:
Running
Running
File size: 3,352 Bytes
57f1cca 870d938 c91e886 870d938 bf82696 d49accf a512b51 902252f 0a6ca66 3d57cbf 0a6ca66 870d938 0146d6f 3d57cbf 9e3d7eb 35d0fde 39f14d4 e3f9866 7dd4127 c91e886 be363ff c91e886 be363ff c91e886 be363ff c91e886 be363ff c91e886 3d57cbf 0173625 3d57cbf 0a6ca66 3d57cbf bf82696 3d57cbf bf82696 39f14d4 3d57cbf bf82696 3d57cbf 6036fba 3d57cbf 6036fba 3d57cbf 39f14d4 3d57cbf 580400e 3d57cbf 31a303b c48dd31 7ed9a89 31a303b 6c2ddbb bf82696 be363ff ae120d2 bf82696 7ed9a89 39f14d4 c91e886 39f14d4 bf82696 7ed9a89 bf82696 badb078 0a7af93 1938cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import streamlit as st
import base64
import io
from huggingface_hub import InferenceClient
from gtts import gTTS
from audiorecorder import audiorecorder
import speech_recognition as sr
pre_prompt_text = ""
if "history" not in st.session_state:
st.session_state.history = []
if "pre_prompt_sent" not in st.session_state:
st.session_state.pre_prompt_sent = False
def recognize_speech(audio_data, show_messages=True):
recognizer = sr.Recognizer()
audio_recording = sr.AudioFile(audio_data)
with audio_recording as source:
audio = recognizer.record(source)
try:
audio_text = recognizer.recognize_google(audio, language="es-ES")
if show_messages:
st.subheader("Texto Reconocido:")
st.write(audio_text)
st.success("Voz reconocida.")
except sr.UnknownValueError:
st.warning("No se pudo reconocer el audio. ¿Intentaste grabar algo?")
audio_text = ""
except sr.RequestError:
st.error("¡Presiona/Habla para comenzar!")
audio_text = ""
return audio_text
def format_prompt(message, history):
prompt = "<s>"
if not st.session_state.pre_prompt_sent:
prompt += f"[INST] {pre_prompt_text} [/INST]"
st.session_state.pre_prompt_sent = True
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(audio_text, history, temperature=None, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
temperature = float(temperature) if temperature is not None else 0.9
temperature = max(temperature, 1e-2)
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42)
formatted_prompt = format_prompt(audio_text, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
response = ""
for response_token in stream:
response += response_token.token.text
response = ' '.join(response.split()).replace('</s>', '')
audio_file = text_to_speech(response)
return response, audio_file
def text_to_speech(text):
tts = gTTS(text=text, lang='es')
audio_fp = io.BytesIO()
tts.write_to_fp(audio_fp)
audio_fp.seek(0)
return audio_fp
def main():
audio_data = audiorecorder("Presiona para Hablar", "Detener Grabación...")
if not audio_data.empty():
st.audio(audio_data.export().read(), format="audio/wav")
audio_data.export("audio.wav", format="wav")
audio_text = recognize_speech("audio.wav")
if audio_text:
output, audio_file = generate(audio_text, history=st.session_state.history)
if audio_file is not None:
st.markdown(
f"""<audio autoplay="autoplay" controls="controls" src="data:audio/mp3;base64,{base64.b64encode(audio_file.read()).decode()}" type="audio/mp3" id="audio_player"></audio>""",
unsafe_allow_html=True)
if __name__ == "__main__":
main() |