nightfury commited on
Commit
b70f195
·
verified ·
1 Parent(s): 7dbb31a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ #import gradio.helpers
3
+ import torch
4
+ import os
5
+ from glob import glob
6
+ from pathlib import Path
7
+ from typing import Optional
8
+
9
+ from diffusers import StableVideoDiffusionPipeline
10
+ from diffusers.utils import load_image, export_to_video
11
+ from PIL import Image
12
+
13
+ import uuid
14
+ import random
15
+ from huggingface_hub import hf_hub_download
16
+ import spaces
17
+
18
+ pipe = StableVideoDiffusionPipeline.from_pretrained(
19
+ "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
20
+ )
21
+ pipe.to("cuda")
22
+
23
+ max_64_bit_int = 2**63 - 1
24
+
25
+ @spaces.GPU(duration=120)
26
+ def sample(
27
+ image: Image,
28
+ seed: Optional[int] = 42,
29
+ randomize_seed: bool = True,
30
+ motion_bucket_id: int = 127,
31
+ fps_id: int = 6,
32
+ version: str = "svd_xt",
33
+ cond_aug: float = 0.02,
34
+ decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
35
+ device: str = "cuda",
36
+ output_folder: str = "outputs",
37
+ ):
38
+ if image.mode == "RGBA":
39
+ image = image.convert("RGB")
40
+
41
+ if(randomize_seed):
42
+ seed = random.randint(0, max_64_bit_int)
43
+ generator = torch.manual_seed(seed)
44
+
45
+ os.makedirs(output_folder, exist_ok=True)
46
+ base_count = len(glob(os.path.join(output_folder, "*.mp4")))
47
+ video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
48
+
49
+ frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
50
+ export_to_video(frames, video_path, fps=fps_id)
51
+ torch.manual_seed(seed)
52
+
53
+ return video_path, frames, seed
54
+
55
+ def resize_image(image, output_size=(1024, 576)):
56
+ # Calculate aspect ratios
57
+ target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
58
+ image_aspect = image.width / image.height # Aspect ratio of the original image
59
+
60
+ # Resize then crop if the original image is larger
61
+ if image_aspect > target_aspect:
62
+ # Resize the image to match the target height, maintaining aspect ratio
63
+ new_height = output_size[1]
64
+ new_width = int(new_height * image_aspect)
65
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
66
+ # Calculate coordinates for cropping
67
+ left = (new_width - output_size[0]) / 2
68
+ top = 0
69
+ right = (new_width + output_size[0]) / 2
70
+ bottom = output_size[1]
71
+ else:
72
+ # Resize the image to match the target width, maintaining aspect ratio
73
+ new_width = output_size[0]
74
+ new_height = int(new_width / image_aspect)
75
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
76
+ # Calculate coordinates for cropping
77
+ left = 0
78
+ top = (new_height - output_size[1]) / 2
79
+ right = output_size[0]
80
+ bottom = (new_height + output_size[1]) / 2
81
+
82
+ # Crop the image
83
+ cropped_image = resized_image.crop((left, top, right, bottom))
84
+ return cropped_image
85
+
86
+ with gr.Blocks() as demo:
87
+ gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
88
+ #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
89
+ ''')
90
+ with gr.Row():
91
+ with gr.Column():
92
+ image = gr.Image(label="Upload your image", type="pil")
93
+ with gr.Accordion("Advanced options", open=False):
94
+ seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
95
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
96
+ motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
97
+ fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
98
+ generate_btn = gr.Button(value="Animate", variant="primary")
99
+ with gr.Column():
100
+ video = gr.Video(label="Generated video")
101
+ gallery = gr.Gallery(label="Generated frames")
102
+
103
+ image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
104
+ generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
105
+
106
+ if __name__ == "__main__":
107
+ demo.launch(share=True, show_api=False)