Spaces:
Runtime error
Runtime error
File size: 6,782 Bytes
8106a70 cded514 5da7484 8106a70 5da7484 8106a70 5da7484 8106a70 5da7484 22c9184 5da7484 22c9184 5da7484 8106a70 e5dbd61 8106a70 e5dbd61 8106a70 5da7484 8106a70 5da7484 8106a70 5da7484 8106a70 5da7484 8106a70 5da7484 8106a70 5da7484 1b0ab4a 074bc88 cded514 22c9184 cded514 8106a70 5da7484 22c9184 5da7484 8106a70 e5dbd61 65e5c0b e5dbd61 5da7484 e5dbd61 0500142 e5dbd61 0500142 e5dbd61 5da7484 e5dbd61 65e5c0b 649e4e0 cded514 2743029 cded514 2743029 cded514 2743029 cded514 5da7484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from __future__ import unicode_literals
import youtube_dl
from pydub import AudioSegment
from pyannote.audio import Pipeline
import re
import whisper
import os
import ffmpeg
import subprocess
import gradio as gr
import traceback
import json
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")
__FILES = set()
def CreateFile(filename):
__FILES.add(filename)
return filename
def RemoveFile(filename):
if (os.path.isfile(filename)):
os.remove(filename)
def RemoveAllFiles():
for file in __FILES:
if (os.path.isfile(file)):
os.remove(file)
def Transcribe(audio="temp_audio.wav"):
def millisec(timeStr):
spl = timeStr.split(":")
s = (int)((int(spl[0]) * 60 * 60 + int(spl[1]) * 60 + float(spl[2]) )* 1000)
return s
def preprocess(audio):
t1 = 0 * 1000
t2 = 20 * 60 * 1000
newAudio = AudioSegment.from_wav(audio)
a = newAudio[t1:t2]
spacermilli = 2000
spacer = AudioSegment.silent(duration=spacermilli)
newAudio = spacer.append(a, crossfade=0)
newAudio.export(audio, format="wav")
return spacermilli, spacer
def diarization(audio):
as_audio = AudioSegment.from_wav(audio)
DEMO_FILE = {'uri': 'blabal', 'audio': audio}
dz = pipeline(DEMO_FILE)
with open(CreateFile(f"diarization_{audio}.txt"), "w") as text_file:
text_file.write(str(dz))
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
dzList = []
for l in dz:
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
start = millisec(start)
end = millisec(end)
lex = re.findall('(SPEAKER_[0-9][0-9])', string=l)[0]
dzList.append([start, end, lex])
sounds = spacer
segments = []
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
for l in dz:
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
start = millisec(start)
end = millisec(end)
segments.append(len(sounds))
sounds = sounds.append(as_audio[start:end], crossfade=0)
sounds = sounds.append(spacer, crossfade=0)
sounds.export(CreateFile(f"dz_{audio}.wav"), format="wav")
return f"dz_{audio}.wav", dzList, segments
def transcribe(dz_audio):
model = whisper.load_model("base")
result = model.transcribe(dz_audio)
# for _ in result['segments']:
# print(_['start'], _['end'], _['text'])
captions = [[((caption["start"]*1000)), ((caption["end"]*1000)), caption["text"]] for caption in result['segments']]
conversation = []
for i in range(len(segments)):
idx = 0
for idx in range(len(captions)):
if captions[idx][0] >= (segments[i] - spacermilli):
break;
while (idx < (len(captions))) and ((i == len(segments) - 1) or (captions[idx][1] < segments[i+1])):
c = captions[idx]
start = dzList[i][0] + (c[0] -segments[i])
if start < 0:
start = 0
idx += 1
if not len(conversation):
conversation.append([dzList[i][2], c[2]])
elif conversation[-1][0] == dzList[i][2]:
conversation[-1][1] += c[2]
else:
conversation.append([dzList[i][2], c[2]])
#print(f"[{dzList[i][2]}] {c[2]}")
return conversation, ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation]))
spacermilli, spacer = preprocess(audio)
dz_audio, dzList, segments = diarization(audio)
conversation, t_text = transcribe(dz_audio)
RemoveAllFiles()
return (t_text, ({ "data": [{"speaker": speaker, "text": text} for speaker, text in conversation]}))
def AudioTranscribe(audio, retries=5):
if retries:
try:
subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
except Exception as ex:
traceback.print_exc()
return AudioTranscribe(audio, retries-1)
if not (os.path.isfile("temp_audio.wav")):
return AudioTranscribe(audio, retries-1)
return Transcribe()
else:
raise gr.Error("There is some issue ith Audio Transcriber. Please try again later!")
def VideoTranscribe(video, retries=5):
if retries:
try:
command = f"ffmpeg -i {video} -ab 160k -ac 2 -ar 44100 -vn temp_audio.wav"
subprocess.call(command, shell=True)
except Exception as ex:
traceback.print_exc()
return VideoTranscribe(video, retries-1)
if not (os.path.isfile("temp_audio.wav")):
return VideoTranscribe(video, retries-1)
return Transcribe()
else:
raise gr.Error("There is some issue ith Video Transcriber. Please try again later!")
return Transcribe()
def YoutubeTranscribe(URL, retries = 5):
if retries:
if "youtu" not in URL.lower():
raise gr.Error(f"{URL} is not a valid youtube URL.")
else:
RemoveFile("temp_audio.wav")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'temp_audio.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
}
try:
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([URL])
except:
return YoutubeTranscribe(URL, retries-1)
stream = ffmpeg.input('temp_audio.m4a')
stream = ffmpeg.output(stream, 'temp_audio.wav')
RemoveFile("temp_audio.m4a")
return Transcribe()
else:
raise gr.Error(f"Unable to get video from {URL}")
ut = gr.Interface(
fn=YoutubeTranscribe,
inputs=gr.Textbox(label="Youtube Link", placeholder="https://www.youtube.com/watch?v=GECcjrYHH8w"),
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
)
vt = gr.Interface(
fn=VideoTranscribe,
inputs='video',
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
)
at = gr.Interface(
fn=AudioTranscribe,
inputs='audio',
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
)
demo = gr.TabbedInterface([ut, vt, at], ["Youtube URL", "Video", "Audio"])
demo.launch() |