Spaces:
Runtime error
Runtime error
File size: 9,303 Bytes
71186cb 1f87a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from pyChatGPT import ChatGPT
import gradio as gr
import os, json
from loguru import logger
import random
from transformers import pipeline
import torch
session_token = os.environ.get('SessionToken')
api = ChatGPT(session_token)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
whisper_model = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-large-v2",
chunk_length_s=30,
device=device,
)
all_special_ids = whisper_model.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def translate_or_transcribe(audio, task):
whisper_model.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="Transcribe in Spoken Language" else translate_token_id]]
text = whisper_model(audio)["text"]
return text
def get_response_from_chatbot(text):
try:
resp = api.send_message(text)
response = resp['message']
# logger.info(f"response_: {response}")
except:
response = "Sorry, the chatGPT queue is full. Please try again in some time"
return response
def chat(message, chat_history):
out_chat = []
if chat_history != '':
out_chat = json.loads(chat_history)
response = get_response_from_chatbot(message)
out_chat.append((message, response))
chat_history = json.dumps(out_chat)
logger.info(f"out_chat_: {len(out_chat)}")
return out_chat, chat_history
start_work = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
function getClientHeight()
{
var clientHeight=0;
if(document.body.clientHeight&&document.documentElement.clientHeight) {
var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
} else {
var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
}
return clientHeight;
}
function setNativeValue(element, value) {
const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
const prototype = Object.getPrototypeOf(element);
const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
if (valueSetter && valueSetter !== prototypeValueSetter) {
prototypeValueSetter.call(element, value);
} else {
valueSetter.call(element, value);
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
if (typeof window['gradioEl'] === 'undefined') {
window['gradioEl'] = gradioEl;
const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
page1.style.display = "none";
page2.style.display = "block";
window['div_count'] = 0;
window['chat_bot'] = window['gradioEl'].querySelectorAll('#chat_bot')[0];
window['chat_bot1'] = window['gradioEl'].querySelectorAll('#chat_bot1')[0];
chat_row = window['gradioEl'].querySelectorAll('#chat_row')[0];
prompt_row = window['gradioEl'].querySelectorAll('#prompt_row')[0];
window['chat_bot1'].children[1].textContent = '';
clientHeight = getClientHeight();
new_height = (clientHeight-300) + 'px';
chat_row.style.height = new_height;
window['chat_bot'].style.height = new_height;
window['chat_bot'].children[2].style.height = new_height;
window['chat_bot1'].style.height = new_height;
window['chat_bot1'].children[2].style.height = new_height;
prompt_row.children[0].style.flex = 'auto';
prompt_row.children[0].style.width = '100%';
window['checkChange'] = function checkChange() {
try {
if (window['chat_bot'].children[2].children[0].children.length > window['div_count']) {
new_len = window['chat_bot'].children[2].children[0].children.length - window['div_count'];
for (var i = 0; i < new_len; i++) {
new_div = window['chat_bot'].children[2].children[0].children[window['div_count'] + i].cloneNode(true);
window['chat_bot1'].children[2].children[0].appendChild(new_div);
}
window['div_count'] = chat_bot.children[2].children[0].children.length;
}
if (window['chat_bot'].children[0].children.length > 1) {
window['chat_bot1'].children[1].textContent = window['chat_bot'].children[0].children[1].textContent;
} else {
window['chat_bot1'].children[1].textContent = '';
}
} catch(e) {
}
}
window['checkChange_interval'] = window.setInterval("window.checkChange()", 500);
}
return false;
}"""
with gr.Blocks(title='Talk to chatGPT') as demo:
gr.Markdown("## Talk to chatGPT with your voice in your native language ! ##")
gr.HTML("<p>You can duplicate this space and use your own session token: <a style='display:inline-block' href='https://huggingface.co/spaces/yizhangliu/chatGPT?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>")
gr.HTML("<p> Instruction on how to get session token can be seen in video <a style='display:inline-block' href='https://www.youtube.com/watch?v=TdNSj_qgdFk'><font style='color:blue;weight:bold;'>here</font></a>. Add your session token by going to settings and add under secrets. </p>")
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row():
start_button = gr.Button("Let's talk to chatGPT!", elem_id="start-btn", visible=True)
start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Row(elem_id="chat_row"):
chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
with gr.Row():
prompt_input_audio = gr.Audio(
source="microphone",
type="filepath",
label="Record Audio Input",
)
translate_btn = gr.Button("Check Whisper first ? 👍")
whisper_task = gr.Radio(["Translate to English", "Transcribe in Spoken Language"], value="Translate to English", show_label=False)
with gr.Row(elem_id="prompt_row"):
prompt_input = gr.Textbox(lines=2, label="Input text",show_label=True)
chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
submit_btn = gr.Button(value = "Send to chatGPT",elem_id="submit-btn").style(
margin=True,
rounded=(True, True, True, True),
width=100
)
translate_btn.click(fn=translate_or_transcribe,
inputs=[prompt_input_audio,whisper_task],
outputs=prompt_input
)
submit_btn.click(fn=chat,
inputs=[prompt_input, chat_history],
outputs=[chatbot, chat_history],
)
gr.HTML('''
<p>Note: Please be aware that audio records from iOS devices will not be decoded as expected by Gradio. For the best experience, record your voice from a computer instead of your smartphone ;)</p>
<div class="footer">
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -
<a href="https://chat.openai.com/chat" target="_blank">chatGPT</a> by <a href="https://openai.com/" style="text-decoration: underline;" target="_blank">OpenAI</a>
</p>
</div>
''')
gr.Markdown("")
demo.launch(debug = True, server_port=7860) |