Qwen2.5 / app.py
Sakalti's picture
Update app.py
8edf56a verified
raw
history blame
2.02 kB
import gradio as gr
from huggingface_hub import InferenceClient
import time
client = InferenceClient("Qwen/Qwen2.5-3b-Instruct")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
progress=gr.Progress() # 進捗表示用
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# AI応答時間計測開始
start_time = time.time()
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
elapsed_time = time.time() - start_time # AI応答時間計測終了
# ユーザーに進捗を表示
progress(0, f"応答中... {elapsed_time:.2f}秒") # 初期応答時間表示
time.sleep(0.5) # 応答中に少し待機
total_response_time = elapsed_time + 0.5 # 総応答時間を計算
return response.choices[0].message.content, f"予測時間: {elapsed_time:.2f}秒 / 総応答時間: {total_response_time:.2f}秒"
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="ユーザーの質問や依頼にのみ答えてください。ポジティブに答えてください", label="システムメッセージ"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大新規トークン"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (核サンプリング)",
),
],
css="""
.gradio-container {
background-color: #212121;
}
"""
)
if __name__ == "__main__":
demo.launch()