import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() # import gradio as gr # gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch() # import streamlit as st # from transformers import AutoTokenizer, AutoModelForCausalLM # # Load model directly # tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") # model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") # # Initialize chat history # if "chat_history" not in st.session_state: # st.session_state.chat_history = [] # # Display chat history # for chat in st.session_state.chat_history: # st.write(f"User: {chat['user']}") # st.write(f"Response: {chat['response']}") # # Get user input # user_input = st.text_input("Enter your message:") # # Generate response # if st.button("Send"): # inputs = tokenizer(user_input, return_tensors="pt") # outputs = model.generate(**inputs) # response = tokenizer.decode(outputs[0], skip_special_tokens=True) # st.session_state.chat_history.append({"user": user_input, "response": response}) # st.write(f"Response: {response}")