saifhmb
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# importing libraries
|
2 |
+
!pip install huggingface_hub
|
3 |
+
!pip install transformers
|
4 |
+
!pip install transformers[torch]
|
5 |
+
!pip install datasets
|
6 |
+
!pip install skops
|
7 |
+
!pip install streamlit
|
8 |
+
from datasets import load_dataset, load_dataset_builder
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import pandas as pd
|
12 |
+
import sklearn
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
from sklearn.preprocessing import StandardScaler
|
15 |
+
from sklearn.linear_model import LogisticRegression
|
16 |
+
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_score, precision_score, recall_score, classification_report
|
17 |
+
from transformers import Trainer, TrainingArguments
|
18 |
+
from skops import hub_utils
|
19 |
+
import pickle
|
20 |
+
from skops.card import Card, metadata_from_config
|
21 |
+
from pathlib import Path
|
22 |
+
from tempfile import mkdtemp, mkstemp
|
23 |
+
import streamlit as st
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
# Loading the dataset
|
27 |
+
dataset_name = "saifhmb/social-network-ads"
|
28 |
+
dataset = load_dataset(dataset_name, split = 'train')
|
29 |
+
dataset = pd.DataFrame(dataset)
|
30 |
+
X = dataset.iloc[:, :-1].values
|
31 |
+
y = dataset.iloc[:, -1].values
|
32 |
+
|
33 |
+
# Spliting the datset into Training and Test set
|
34 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
|
35 |
+
|
36 |
+
# Feature Scaling
|
37 |
+
sc = StandardScaler()
|
38 |
+
X_train = sc.fit_transform(X_train)
|
39 |
+
X_test = sc.transform(X_test)
|
40 |
+
|
41 |
+
# Training Logit Reg Model using the Training set
|
42 |
+
model = LogisticRegression()
|
43 |
+
model.fit(X_train, y_train)
|
44 |
+
|
45 |
+
# Predicting the Test result
|
46 |
+
y_pred = model.predict(X_test)
|
47 |
+
|
48 |
+
# Making the Confusion Matrix and evaluating performance
|
49 |
+
cm = confusion_matrix(y_pred, y_test, labels=model.classes_)
|
50 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
|
51 |
+
disp.plot()
|
52 |
+
plt.show()
|
53 |
+
acc = accuracy_score(y_test, y_pred)
|
54 |
+
ps = precision_score(y_test, y_pred)
|
55 |
+
rs = recall_score(y_test, y_pred)
|
56 |
+
|
57 |
+
# Pickling the model
|
58 |
+
pickle_out = open("model.pkl", "wb")
|
59 |
+
pickle.dump(model, pickle_out)
|
60 |
+
pickle_out.close()
|
61 |
+
|
62 |
+
# Loading the model to predict on the data
|
63 |
+
pickle_in = open('model.pkl', 'rb')
|
64 |
+
model = pickle.load(pickle_in)
|
65 |
+
|
66 |
+
def welcome():
|
67 |
+
return 'welcome all'
|
68 |
+
|
69 |
+
# defining the function which will make the prediction using the data which the user inputs
|
70 |
+
def prediction(Age, EstimatedSalary):
|
71 |
+
prediction = model.predict.sc.transform([[Age, EstimatedSalary]])
|
72 |
+
print(prediction)
|
73 |
+
return prediction
|
74 |
+
|
75 |
+
# this is the main function in which we define our webpage
|
76 |
+
def main():
|
77 |
+
# giving the webpage a title
|
78 |
+
st.title("Customer Vehicle Purchase Prediction")
|
79 |
+
|
80 |
+
Age = st.text_input("Age", "Type Here")
|
81 |
+
EstimatedSalary = st.text_input("EstimatedSalary", "Type Here")
|
82 |
+
result = ""
|
83 |
+
if st.button("Predict"):
|
84 |
+
result = prediction(Age, EstimatedSalary)
|
85 |
+
|
86 |
+
st.success('The output is {}'.format(result))
|
87 |
+
|
88 |
+
if __name__=='__main__':
|
89 |
+
main()
|