saifhmb
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# importing libraries
|
2 |
+
from datasets import load_dataset, load_dataset_builder
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
import sklearn
|
7 |
+
from sklearn.compose import ColumnTransformer
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.preprocessing import OneHotEncoder, LabelEncoder, StandardScaler
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_score, precision_score, recall_score, classification_report
|
12 |
+
from transformers import Trainer, TrainingArguments
|
13 |
+
from skops import hub_utils
|
14 |
+
import pickle
|
15 |
+
from skops.card import Card, metadata_from_config
|
16 |
+
from pathlib import Path
|
17 |
+
from tempfile import mkdtemp, mkstemp
|
18 |
+
import streamlit as st
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
# Loading the dataset
|
22 |
+
dataset_name = "saifhmb/CreditCardRisk"
|
23 |
+
dataset = load_dataset(dataset_name, split = 'train')
|
24 |
+
dataset = pd.DataFrame(dataset)
|
25 |
+
X = dataset.iloc[:, :-1].values
|
26 |
+
y = dataset.iloc[:, -1].values
|
27 |
+
|
28 |
+
# Encoding the Independent Variables
|
29 |
+
ct = ColumnTransformer(transformers = [('encoder', OneHotEncoder(), [2, 3, 6, 7])], remainder = 'passthrough')
|
30 |
+
X = np.array(ct.fit_transform(X))
|
31 |
+
|
32 |
+
# Encoding the Dependent Variable
|
33 |
+
le = LabelEncoder()
|
34 |
+
y = le.fit_transform(y)
|
35 |
+
|
36 |
+
# Spliting the datset into Training and Test set
|
37 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 0)
|
38 |
+
|
39 |
+
# Feature Scaling
|
40 |
+
sc = StandardScaler()
|
41 |
+
X_train = sc.fit_transform(X_train)
|
42 |
+
X_test = sc.transform(X_test)
|
43 |
+
|
44 |
+
# Training Logit Reg Model using the Training set
|
45 |
+
model = LogisticRegression()
|
46 |
+
model.fit(X_train, y_train)
|
47 |
+
|
48 |
+
# Predicting the Test result
|
49 |
+
y_pred = model.predict(X_test)
|
50 |
+
|
51 |
+
# Making the Confusion Matrix and evaluating performance
|
52 |
+
cm = confusion_matrix(y_pred, y_test, labels=model.classes_)
|
53 |
+
display_labels = np.array(['bad loss', 'bad profit', 'good risk'])
|
54 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=display_labels)
|
55 |
+
disp.plot()
|
56 |
+
plt.show()
|
57 |
+
acc = accuracy_score(y_test, y_pred)
|
58 |
+
ps = precision_score(y_test, y_pred, average ='micro')
|
59 |
+
rs = recall_score(y_test, y_pred, average ='micro')
|
60 |
+
|
61 |
+
# Pickling the model
|
62 |
+
pickle_out = open("model.pkl", "wb")
|
63 |
+
pickle.dump(model, pickle_out)
|
64 |
+
pickle_out.close()
|
65 |
+
|
66 |
+
# Loading the model to predict on the data
|
67 |
+
pickle_in = open('model.pkl', 'rb')
|
68 |
+
model = pickle.load(pickle_in)
|
69 |
+
|
70 |
+
def welcome():
|
71 |
+
return 'welcome all'
|
72 |
+
|
73 |
+
# defining the function which will make the prediction using the data which the user inputs
|
74 |
+
def prediction(AGE, INCOME, GENDER, MARITAL, NUMKIDS, NUMCARDS, HOWPAID, MORTGAGE, STORECAR, LOANS):
|
75 |
+
prediction = model.predict(sc.transform([[AGE, INCOME, GENDER, MARITAL, NUMKIDS, NUMCARDS, HOWPAID, MORTGAGE, STORECAR, LOANS]]))
|
76 |
+
print(prediction)
|
77 |
+
return prediction
|
78 |
+
|
79 |
+
# this is the main function in which we define our webpage
|
80 |
+
def main():
|
81 |
+
# giving the webpage a title
|
82 |
+
st.title("Credit Card Risk Assessment ML App")
|
83 |
+
st.header("Model Description", divider = "gray")
|
84 |
+
multi = '''This is a logistic regression model trained on customers' credit card risk dataset in a bank using sklearn library.
|
85 |
+
The model predicts whether a customer is worth issuing a credit card or not.
|
86 |
+
For more details on the model please refer to the model card at https://huggingface.co/saifhmb/Credit-Card-Risk-Model
|
87 |
+
'''
|
88 |
+
st.markdown(multi)
|
89 |
+
st.markdown("To determine whether a customer is worth issuing a credit card or not, please **ENTER** the AGE INCOME, GENDER, MARITAL, NUMKIDS, NUMCARDS, HOWPAID, MORTGAGE, STORECAR, and LOANS:")
|
90 |
+
col1, col2, col3 = st.columns(3)
|
91 |
+
with col1:
|
92 |
+
AGE = st.number_input("AGE")
|
93 |
+
with col2:
|
94 |
+
INCOME = st.number_input("INCOME")
|
95 |
+
with col3:
|
96 |
+
GENDER = st.text_input("GENDER (Please enter 'm' for male and 'f' for female)")
|
97 |
+
|
98 |
+
col4, col5, col6 = st.columns(3)
|
99 |
+
with col4:
|
100 |
+
MARITAL = st.text_input("MARITAL STATUS (Please enter one of the following options: 'single', 'married', or 'divsepwid')")
|
101 |
+
with col5:
|
102 |
+
NUMKIDS = st.number_input("Number of dependent children")
|
103 |
+
with col6:
|
104 |
+
NUMCARDS = st.number_input("Number of credit cards excluding store credit cards")
|
105 |
+
|
106 |
+
col7, col8, col9 =st.columns(3)
|
107 |
+
with col7:
|
108 |
+
HOWPAID = st.text_input("How often is customer paid by employer (weekly or monthly)")
|
109 |
+
with col8:
|
110 |
+
MORTGAGE = st.text_input("Does customer have a mortgage? please enter 'y' for yes or 'n' for no")
|
111 |
+
with col9:
|
112 |
+
STORECAR = st.number_input("Number of store credit cards")
|
113 |
+
|
114 |
+
LOANS = st.number_input("Number of outstanding loans")
|
115 |
+
result = ""
|
116 |
+
if st.button("Predict"):
|
117 |
+
result = prediction(AGE, INCOME, GENDER, MARITAL, NUMKIDS, NUMCARDS, HOWPAID, MORTGAGE, STORECAR, LOANS)
|
118 |
+
if result == 0:
|
119 |
+
st.success("The output is {}".format(result) + " which falls under 'bad loss' and thus the customer is NOT worth issuing a credit card")
|
120 |
+
if result == 1:
|
121 |
+
st.success("The output is {}".format(result) + " which falls under 'bad profit' and thus the customer MAYBE worth issuing a credit card")
|
122 |
+
if result == 2:
|
123 |
+
st.success("The output is {}".format(result) + " which falls under 'good risk' and thus the customer worth issuing a credit card")
|
124 |
+
|
125 |
+
if __name__=='__main__':
|
126 |
+
main()
|
127 |
+
|
128 |
+
|