saifhmb commited on
Commit
4034e13
·
unverified ·
1 Parent(s): 5e13517

Applied feature scaling after splitting the dataset

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -4,6 +4,8 @@ import numpy as np
4
  import matplotlib.pyplot as plt
5
  import pandas as pd
6
  import sklearn
 
 
7
  from sklearn.compose import ColumnTransformer
8
  from sklearn.model_selection import train_test_split
9
  from sklearn.preprocessing import OneHotEncoder, LabelEncoder, StandardScaler
@@ -27,10 +29,8 @@ dataset = dataset.drop(['ID'], axis = 1)
27
  y = dataset.iloc[:, -1].values
28
  dataset = dataset.drop(['RISK'], axis = 1)
29
 
30
- # Encoding the Independent Variables and Applying Feature Scaling
31
- from sklearn.compose import make_column_transformer
32
- from sklearn.compose import make_column_selector
33
- ct = make_column_transformer((StandardScaler(),make_column_selector(dtype_include=np.number)),[OneHotEncoder(), make_column_selector(dtype_include=object)], remainder = 'passthrough')
34
  X = ct.fit_transform(dataset)
35
 
36
 
@@ -41,7 +41,10 @@ y = le.fit_transform(y)
41
  # Spliting the datset into Training and Test set
42
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 0)
43
 
44
-
 
 
 
45
 
46
  # Training Logit Reg Model using the Training set
47
  model = LogisticRegression()
 
4
  import matplotlib.pyplot as plt
5
  import pandas as pd
6
  import sklearn
7
+ from sklearn.compose import make_column_transformer
8
+ from sklearn.compose import make_column_selector
9
  from sklearn.compose import ColumnTransformer
10
  from sklearn.model_selection import train_test_split
11
  from sklearn.preprocessing import OneHotEncoder, LabelEncoder, StandardScaler
 
29
  y = dataset.iloc[:, -1].values
30
  dataset = dataset.drop(['RISK'], axis = 1)
31
 
32
+ # Encoding the Independent Variables
33
+ ct = make_column_transformer([OneHotEncoder(), make_column_selector(dtype_include=object)], remainder = 'passthrough')
 
 
34
  X = ct.fit_transform(dataset)
35
 
36
 
 
41
  # Spliting the datset into Training and Test set
42
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 0)
43
 
44
+ # Feature Scaling
45
+ sc = StandardScaler()
46
+ X_train = sc.fit_transform(X_train)
47
+ X_test = sc.transform(X_test)
48
 
49
  # Training Logit Reg Model using the Training set
50
  model = LogisticRegression()