Spaces:
Sleeping
Sleeping
Commit
·
c9d2ea5
1
Parent(s):
fc952fa
Code Updated
Browse files
app.py
CHANGED
@@ -1,4 +1,40 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from datasets import load_dataset
|
6 |
+
import re
|
7 |
|
8 |
+
# Load the dataset
|
9 |
+
ds = load_dataset("Vezora/Open-Critic-GPT")
|
10 |
+
|
11 |
+
st.write("Dataset")
|
12 |
+
|
13 |
+
# Load the model and tokenizer
|
14 |
+
model_name = "shareAI/llama3.1-8b-instruct-dpo-zh"
|
15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Function to generate a response from the model
|
19 |
+
def generate_response(human_text):
|
20 |
+
inputs = tokenizer.encode(human_text, return_tensors='pt')
|
21 |
+
outputs = model.generate(inputs, max_length=50, num_beams=5, early_stopping=True)
|
22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
return response
|
24 |
+
|
25 |
+
# Iterate over the first few examples in the dataset and display them with model responses
|
26 |
+
for i, x in enumerate(ds["train"]):
|
27 |
+
col1, col2, col3 = st.columns(3)
|
28 |
+
if i < 3:
|
29 |
+
with col1:
|
30 |
+
st.code(x["Human"])
|
31 |
+
|
32 |
+
with col2:
|
33 |
+
st.write(x["Assistant"])
|
34 |
+
|
35 |
+
with col3:
|
36 |
+
# Generate and display the model's response
|
37 |
+
response = generate_response(x["Human"])
|
38 |
+
st.write(response)
|
39 |
+
else:
|
40 |
+
break
|