Spaces:
Runtime error
Runtime error
import random | |
from typing import Optional | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from peft import PeftModel | |
from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig | |
app = FastAPI() | |
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") | |
model = LLaMAForCausalLM.from_pretrained( | |
"decapoda-research/llama-7b-hf", | |
load_in_8bit=True, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained(model, "tloen/alpaca-lora-7b") | |
class InputPrompt(BaseModel): | |
instruction: str | |
input: Optional[str] = None | |
class OutputResponse(BaseModel): | |
response: str | |
def evaluate(input_prompt: InputPrompt): | |
temperature = 0.9 | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=0.75, | |
num_beams=1, do_sample=True | |
) | |
prompt = generate_prompt(input_prompt.instruction, input_prompt.input) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].cuda() | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=256 | |
) | |
for s in generation_output.sequences: | |
output = tokenizer.decode(s) | |
return OutputResponse(response=output.split("### Response:")[1].strip()) | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Response:""" | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |