alpaca-lora / app.py
sagu7's picture
Update app.py
b282f54
import random
from typing import Optional
from fastapi import FastAPI
from pydantic import BaseModel
from peft import PeftModel
from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig
app = FastAPI()
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf")
model = LLaMAForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
device_map="auto",
)
model = PeftModel.from_pretrained(model, "tloen/alpaca-lora-7b")
class InputPrompt(BaseModel):
instruction: str
input: Optional[str] = None
class OutputResponse(BaseModel):
response: str
@app.post("/evaluate")
def evaluate(input_prompt: InputPrompt):
temperature = 0.9
generation_config = GenerationConfig(
temperature=temperature,
top_p=0.75,
num_beams=1, do_sample=True
)
prompt = generate_prompt(input_prompt.instruction, input_prompt.input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256
)
for s in generation_output.sequences:
output = tokenizer.decode(s)
return OutputResponse(response=output.split("### Response:")[1].strip())
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)