Spaces:
Running
Running
File size: 6,911 Bytes
a3b1df2 2eaa44a 8c4b3e2 2eaa44a c9b6f29 55ba65d c9b6f29 2eaa44a 8c4b3e2 2eaa44a fde2e87 8c4b3e2 2eaa44a 8c4b3e2 93b51e2 8c4b3e2 15d99f5 8c4b3e2 908cc3c 8c4b3e2 2eaa44a c1e6aff 2eaa44a c9b6f29 55ba65d c9b6f29 55ba65d 2eaa44a 55ba65d c9b6f29 55ba65d c9b6f29 55ba65d c9b6f29 55ba65d c9b6f29 55ba65d c9b6f29 55ba65d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import os
import torch
from huggingface_hub import InferenceClient
# Khurram
# from fastapi import FastAPI, Query
# from pydantic import BaseModel
# import uvicorn
# from fastapi.responses import JSONResponse
#################
# Import eSpeak TTS pipeline
from tts_cli import (
build_model as build_model_espeak,
generate_long_form_tts as generate_long_form_tts_espeak,
)
# Import OpenPhonemizer TTS pipeline
from tts_cli_op import (
build_model as build_model_open,
generate_long_form_tts as generate_long_form_tts_open,
)
from pretrained_models import Kokoro
#
# ---------------------------------------------------------------------
# Path to models and voicepacks
# ---------------------------------------------------------------------
MODELS_DIR = "pretrained_models/Kokoro"
VOICES_DIR = "pretrained_models/Kokoro/voices"
HF_TOKEN = os.getenv("HF_TOKEN")
client = InferenceClient(api_key=HF_TOKEN)
# ---------------------------------------------------------------------
# List the models (.pth) and voices (.pt)
# ---------------------------------------------------------------------
def get_models():
return sorted([f for f in os.listdir(MODELS_DIR) if f.endswith(".pth")])
def get_voices():
return sorted([f for f in os.listdir(VOICES_DIR) if f.endswith(".pt")])
# ---------------------------------------------------------------------
# We'll map engine selection -> (build_model_func, generate_func)
# ---------------------------------------------------------------------
ENGINES = {
"espeak": (build_model_espeak, generate_long_form_tts_espeak),
"openphonemizer": (build_model_open, generate_long_form_tts_open),
}
# ---------------------------------------------------------------------
# The main inference function called by Gradio
# ---------------------------------------------------------------------
def tts_inference(text, engine, model_file, voice_file, speed=1.0):
"""
text: Input string
engine: "espeak" or "openphonemizer"
model_file: Selected .pth from the models folder
voice_file: Selected .pt from the voices folder
speed: Speech speed
"""
# 0) Get the response of user query from LLAMA
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": text + str('describe in one line only')
} #,
# {
# "type": "image_url",
# "image_url": {
# "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# }
# }
]
}
]
response_from_llama = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500)
# 1) Map engine to the correct build_model + generate_long_form_tts
build_fn, gen_fn = ENGINES[engine]
# 2) Prepare paths
model_path = os.path.join(MODELS_DIR, model_file)
voice_path = os.path.join(VOICES_DIR, voice_file)
# 3) Decide device
device = "cuda" if torch.cuda.is_available() else "cpu"
# 4) Load model
model = build_fn(model_path, device=device)
# Set submodules eval
for k, subm in model.items():
if hasattr(subm, "eval"):
subm.eval()
# 5) Load voicepack
voicepack = torch.load(voice_path, map_location=device)
if hasattr(voicepack, "eval"):
voicepack.eval()
# 6) Generate TTS
audio, phonemes = gen_fn(model, response_from_llama.choices[0].message['content'], voicepack, speed=speed)
sr = 22050 # or your actual sample rate
return (sr, audio) # Gradio expects (sample_rate, np_array)
#------------------------------------------
# FAST API
#---------------
# app = FastAPI()
# class TTSRequest(BaseModel):
# text: str
# engine: str
# model_file: str
# voice_file: str
# speed: float = 1.0
# @app.post("/tts")
# def generate_tts(request: TTSRequest):
# try:
# sr, audio = tts_inference(
# text="What is Deep SeEK? define in 2 lines",
# engine="openphonemizer",
# model_file="kokoro-v0_19.pth",
# voice_file="af_bella.pt",
# speed=1.0
# )
# return JSONResponse(content={
# "sample_rate": sr,
# "audio_tensor": audio.tolist()
# })
# except Exception as e:
# return JSONResponse(content={"error": str(e)}, status_code=500)
# if __name__ == "__main__":
# uvicorn.run(app, host="0.0.0.0", port=8000)
###############################
# ---------------------------------------------------------------------
# Build Gradio App
# ---------------------------------------------------------------------
def create_gradio_app():
model_list = get_models()
voice_list = get_voices()
css = """
h4 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
"""
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
gr.Markdown("## LLAMA TTS DEMO - API - GRADIO VISUAL")
# Row 1: Text input
text_input = gr.Textbox(
label="Enter your question",
value="What is AI?",
lines=2,
)
# Row 2: Engine selection
# engine_dropdown = gr.Dropdown(
# choices=["espeak", "openphonemizer"],
# value="openphonemizer",
# label="Phonemizer",
# )
# Row 3: Model dropdown
# model_dropdown = gr.Dropdown(
# choices=model_list,
# value=model_list[0] if model_list else None,
# label="Model (.pth)",
# )
# Row 4: Voice dropdown
# voice_dropdown = gr.Dropdown(
# choices=voice_list,
# value=voice_list[0] if voice_list else None,
# label="Voice (.pt)",
# )
# Row 5: Speed slider
speed_slider = gr.Slider(
minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speech Speed"
)
# Generate button + audio output
generate_btn = gr.Button("Generate")
tts_output = gr.Audio(label="TTS Output")
# Connect the button to our inference function
generate_btn.click(
fn=tts_inference,
inputs=[
text_input,
gr.State("openphonemizer"), #engine_dropdown,
gr.State("kokoro-v0_19.pth"), #model_dropdown,
gr.State("af_bella.pt"), #voice_dropdown,
speed_slider,
],
outputs=tts_output,
)
gr.Markdown(
"#### LLAMA - TTS"
)
return demo
# ---------------------------------------------------------------------
# Main
# ---------------------------------------------------------------------
if __name__ == "__main__":
app = create_gradio_app()
app.launch()
|