from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, PeftModel class ModelInput(BaseModel): prompt: str max_new_tokens: int = 50 app = FastAPI() # Load base model and tokenizer base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct" adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" # Initialize tokenizer from base model tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Load base model base_model = AutoModelForCausalLM.from_pretrained( base_model_path, device_map="auto", trust_remote_code=True ) # Load and merge adapter weights model = PeftModel.from_pretrained(base_model, adapter_path) model = model.merge_and_unload() # Initialize pipeline generator = pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_response(model, tokenizer, instruction, max_new_tokens=128): try: messages = [{"role": "user", "content": instruction}] input_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device) outputs = model.generate( inputs, max_new_tokens=max_new_tokens, temperature=0.2, top_p=0.9, do_sample=True, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response except Exception as e: raise ValueError(f"Error generating response: {e}") @app.post("/generate") def generate_text(input: ModelInput): try: response = generate_response( model=model, tokenizer=tokenizer, instruction=input.prompt, max_new_tokens=input.max_new_tokens ) return {"generated_text": response} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/") def root(): return {"message": "Welcome to the Hugging Face Model API!"}