from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoModelForCausalLM, AutoTokenizer import torch from huggingface_hub import snapshot_download class ModelInput(BaseModel): prompt: str max_new_tokens: int = 50 app = FastAPI() # Define model paths base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct" adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" try: # First load the base model print("Loading base model...") model = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.float16, trust_remote_code=True, device_map="auto" ) # Load tokenizer from base model print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Download and load adapter weights print("Loading adapter weights...") adapter_path_local = snapshot_download(adapter_path) # Load the adapter weights state_dict = torch.load(f"{adapter_path_local}/adapter_model.safetensors") model.load_state_dict(state_dict, strict=False) print("Model and adapter loaded successfully!") except Exception as e: print(f"Error during model loading: {e}") raise def generate_response(model, tokenizer, instruction, max_new_tokens=128): """Generate a response from the model based on an instruction.""" try: messages = [{"role": "user", "content": instruction}] input_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device) outputs = model.generate( inputs, max_new_tokens=max_new_tokens, temperature=0.2, top_p=0.9, do_sample=True, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response except Exception as e: raise ValueError(f"Error generating response: {e}") @app.post("/generate") async def generate_text(input: ModelInput): try: response = generate_response( model=model, tokenizer=tokenizer, instruction=input.prompt, max_new_tokens=input.max_new_tokens ) return {"generated_text": response} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/") async def root(): return {"message": "Welcome to the Model API!"}