Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
from safetensors.torch import load_file | |
import torch | |
# Define the input schema | |
class ModelInput(BaseModel): | |
prompt: str | |
max_new_tokens: int = 50 # Optional: Defaults to 50 tokens | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Load the base model and tokenizer | |
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct" # Base model | |
adapter_weights_path = "https://huggingface.co/khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs/resolve/main/adapter_model.safetensors" | |
# Path to the adapter weights | |
tokenizer = AutoTokenizer.from_pretrained(base_model_path) | |
model = AutoModelForCausalLM.from_pretrained(base_model_path) | |
# Load the adapter weights | |
def load_adapter_weights(model, adapter_weights_path): | |
adapter_weights = load_file(adapter_weights_path) | |
model.load_state_dict(adapter_weights, strict=False) # Apply the weights | |
return model | |
# Apply adapter weights to the model | |
model = load_adapter_weights(model, adapter_weights_path) | |
# Ensure the model is in evaluation mode | |
model.eval() | |
# Initialize the pipeline | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Helper function to generate a response | |
def generate_response(model, tokenizer, instruction, max_new_tokens=128): | |
"""Generate a response from the model based on an instruction.""" | |
try: | |
# Tokenize and generate the output | |
inputs = tokenizer(instruction, return_tensors="pt") | |
inputs = {key: value.to(model.device) for key, value in inputs.items()} # Move tensors to the model's device | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
) | |
# Decode the output | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
raise ValueError(f"Error generating response: {e}") | |
def generate_text(input: ModelInput): | |
"""API endpoint to generate text.""" | |
try: | |
# Call the helper function | |
response = generate_response( | |
model=model, tokenizer=tokenizer, instruction=input.prompt, max_new_tokens=input.max_new_tokens | |
) | |
return {"generated_text": response} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def root(): | |
return {"message": "Welcome to the Hugging Face Model API with Adapter Support!"} | |