Spaces:
Sleeping
Sleeping
Chaitanya Sagar Gurujula
commited on
Commit
·
e59a831
1
Parent(s):
c3f5954
added initial version
Browse files- Dockerfile +10 -0
- gpt-transformers.ipynb +1 -0
- input.txt +0 -0
- requirements.txt +8 -0
- src/__pycache__/model.cpython-312.pyc +0 -0
- src/app.py +111 -0
- src/model.py +298 -0
- src/templates/index.html +98 -0
- train_get2-8-init.py +287 -0
- training_log.txt +0 -0
Dockerfile
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
RUN pip install -r requirements.txt
|
7 |
+
|
8 |
+
COPY src/ .
|
9 |
+
|
10 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
gpt-transformers.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.12","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"gpu","dataSources":[{"sourceId":10477901,"sourceType":"datasetVersion","datasetId":6487916}],"dockerImageVersionId":30840,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input/transformers-input/input.txt'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n\n# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","trusted":true,"execution":{"iopub.status.busy":"2025-01-15T14:34:35.524291Z","iopub.execute_input":"2025-01-15T14:34:35.524674Z","iopub.status.idle":"2025-01-15T14:34:36.015800Z","shell.execute_reply.started":"2025-01-15T14:34:35.524644Z","shell.execute_reply":"2025-01-15T14:34:36.014727Z"}},"outputs":[],"execution_count":9},{"cell_type":"code","source":"# Solving for residual std scaling issue\nimport os\nimport math\nimport time\nimport inspect\nfrom dataclasses import dataclass\nimport torch\nimport torch.nn as nn\nfrom torch.nn import functional as F","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:14.295213Z","iopub.execute_input":"2025-01-16T01:11:14.295523Z","iopub.status.idle":"2025-01-16T01:11:17.362144Z","shell.execute_reply.started":"2025-01-16T01:11:14.295499Z","shell.execute_reply":"2025-01-16T01:11:17.361475Z"}},"outputs":[],"execution_count":1},{"cell_type":"code","source":"class CausalSelfAttention(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n assert config.n_embd % config.n_head == 0\n # key, query, value projections for all heads, but in a batch\n self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)\n # output projection\n self.c_proj = nn.Linear(config.n_embd, config.n_embd)\n self.c_proj.NANGPT_SCALE_INIT = 1\n # regularization\n self.n_head = config.n_head\n self.n_embd = config.n_embd\n self.register_buffer(\"bias\", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))\n\n def forward(self, x):\n B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)\n # calculate query, key, values for all heads in batch and move head forward to be the batch dim\n # nh is \"number of heads\", hs is \"head size\", and C (number of channels) = nh * hs\n # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer\n qkv = self.c_attn(x)\n q, k, v = qkv.split(self.n_embd, dim=2)\n k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)\n q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)\n v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)\n\n att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))\n att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))\n att = F.softmax(att, dim=-1)\n y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)\n\n y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side\n # output projection\n y = self.c_proj(y)\n return y\n","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:17.363161Z","iopub.execute_input":"2025-01-16T01:11:17.363491Z","iopub.status.idle":"2025-01-16T01:11:17.370629Z","shell.execute_reply.started":"2025-01-16T01:11:17.363471Z","shell.execute_reply":"2025-01-16T01:11:17.369710Z"}},"outputs":[],"execution_count":2},{"cell_type":"code","source":"class MLP(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)\n self.gelu = nn.GELU(approximate='tanh')\n self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)\n self.c_proj.NANOGPT_SCALE_INIT = 1\n\n def forward(self, x):\n x = self.c_fc(x)\n x = self.gelu(x)\n x = self.c_proj(x)\n return x","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:19.837235Z","iopub.execute_input":"2025-01-16T01:11:19.837640Z","iopub.status.idle":"2025-01-16T01:11:19.843845Z","shell.execute_reply.started":"2025-01-16T01:11:19.837608Z","shell.execute_reply":"2025-01-16T01:11:19.842822Z"}},"outputs":[],"execution_count":3},{"cell_type":"code","source":"class Block(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.ln_1 = nn.LayerNorm(config.n_embd)\n self.attn = CausalSelfAttention(config)\n self.ln_2 = nn.LayerNorm(config.n_embd)\n self.mlp = MLP(config)\n\n def forward(self, x):\n x = x + self.attn(self.ln_1(x))\n x = x + self.mlp(self.ln_2(x))\n return x","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:22.456129Z","iopub.execute_input":"2025-01-16T01:11:22.456449Z","iopub.status.idle":"2025-01-16T01:11:22.461192Z","shell.execute_reply.started":"2025-01-16T01:11:22.456421Z","shell.execute_reply":"2025-01-16T01:11:22.460364Z"}},"outputs":[],"execution_count":4},{"cell_type":"code","source":"@dataclass\nclass GPTConfig:\n block_size: int = 1024 # max sequence length\n vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token\n n_layer: int = 12 # number of layers\n n_head: int = 12 # number of heads\n n_embd: int = 768 # embedding dimension","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:24.402909Z","iopub.execute_input":"2025-01-16T01:11:24.403223Z","iopub.status.idle":"2025-01-16T01:11:24.407719Z","shell.execute_reply.started":"2025-01-16T01:11:24.403198Z","shell.execute_reply":"2025-01-16T01:11:24.406984Z"}},"outputs":[],"execution_count":5},{"cell_type":"code","source":"class GPT(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.config = config\n\n self.transformer = nn.ModuleDict(dict(\n wte = nn.Embedding(config.vocab_size, config.n_embd),\n wpe = nn.Embedding(config.block_size, config.n_embd),\n h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),\n ln_f = nn.LayerNorm(config.n_embd),\n ))\n self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)\n\n # weight sharing\n self.transformer.wte.weight = self.lm_head.weight\n\n # weight initialization\n self.apply(self._init_weights)\n\n def _init_weights(self, module):\n if isinstance(module, nn.Linear):\n std = 0.02\n if hasattr(module, 'NANGPT_SCALE_INIT'):\n std *= (2 * self.config.n_layer) ** -0.5\n torch.nn.init.normal_(module.weight, mean = 0.0, std = std)\n if module.bias is not None:\n torch.nn.init.zeros_(module.bias)\n elif isinstance(module, nn.Embedding):\n torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)\n\n\n\n def forward(self, idx, targets=None):\n # idx is of shape (B, T)\n B, T = idx.size()\n assert T <= self.config.block_size, f\"Cannot forward sequence of length {T}, block size is only {self.config.block_size}\"\n # forward the token and posisition embeddings\n pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)\n pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)\n tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)\n x = tok_emb + pos_emb\n # forward the blocks of the transformer\n for block in self.transformer.h:\n x = block(x)\n # forward the final layernorm and the classifier\n x = self.transformer.ln_f(x)\n logits = self.lm_head(x) # (B, T, vocab_size)\n loss = None\n if targets is not None:\n loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))\n return logits, loss\n\n @classmethod\n def from_pretrained(cls, model_type):\n \"\"\"Loads pretrained GPT-2 model weights from huggingface\"\"\"\n assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}\n from transformers import GPT2LMHeadModel\n print(\"loading weights from pretrained gpt: %s\" % model_type)\n\n # n_layer, n_head and n_embd are determined from model_type\n config_args = {\n 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params\n 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params\n 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params\n 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params\n }[model_type]\n config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints\n config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints\n # create a from-scratch initialized minGPT model\n config = GPTConfig(**config_args)\n model = GPT(config)\n sd = model.state_dict()\n sd_keys = sd.keys()\n sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param\n\n # init a huggingface/transformers model\n model_hf = GPT2LMHeadModel.from_pretrained(model_type)\n sd_hf = model_hf.state_dict()\n\n # copy while ensuring all of the parameters are aligned and match in names and shapes\n sd_keys_hf = sd_hf.keys()\n sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer\n sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)\n transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']\n # basically the openai checkpoints use a \"Conv1D\" module, but we only want to use a vanilla Linear\n # this means that we have to transpose these weights when we import them\n assert len(sd_keys_hf) == len(sd_keys), f\"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}\"\n for k in sd_keys_hf:\n if any(k.endswith(w) for w in transposed):\n # special treatment for the Conv1D weights we need to transpose\n assert sd_hf[k].shape[::-1] == sd[k].shape\n with torch.no_grad():\n sd[k].copy_(sd_hf[k].t())\n else:\n # vanilla copy over the other parameters\n assert sd_hf[k].shape == sd[k].shape\n with torch.no_grad():\n sd[k].copy_(sd_hf[k])\n\n return model","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:26.530758Z","iopub.execute_input":"2025-01-16T01:11:26.531068Z","iopub.status.idle":"2025-01-16T01:11:26.543967Z","shell.execute_reply.started":"2025-01-16T01:11:26.531045Z","shell.execute_reply":"2025-01-16T01:11:26.542879Z"}},"outputs":[],"execution_count":6},{"cell_type":"code","source":"# model = GPT.from_pretrained('gpt2')\n\ndevice = 'cpu'\nif torch.cuda.is_available():\n device = 'cuda'\nelif hasattr(torch.backends, \"mps\") and torch.backends.mps.is_available():\n device = \"mps\"\nprint(f\"using device: {device}\")\n\n# SEED\ntorch.manual_seed(1337)\nif torch.cuda.is_available():\n torch.cuda.manual_seed(1337)\n\n# STOP\nnum_return_sequences = 5\nmax_length = 30","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:31.096650Z","iopub.execute_input":"2025-01-16T01:11:31.096934Z","iopub.status.idle":"2025-01-16T01:11:31.154262Z","shell.execute_reply.started":"2025-01-16T01:11:31.096913Z","shell.execute_reply":"2025-01-16T01:11:31.153422Z"}},"outputs":[{"name":"stdout","text":"using device: cuda\n","output_type":"stream"}],"execution_count":7},{"cell_type":"code","source":"!pip install tiktoken","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:33.747825Z","iopub.execute_input":"2025-01-16T01:11:33.748149Z","iopub.status.idle":"2025-01-16T01:11:38.202233Z","shell.execute_reply.started":"2025-01-16T01:11:33.748124Z","shell.execute_reply":"2025-01-16T01:11:38.201182Z"}},"outputs":[{"name":"stdout","text":"Requirement already satisfied: tiktoken in /usr/local/lib/python3.10/dist-packages (0.8.0)\nRequirement already satisfied: regex>=2022.1.18 in /usr/local/lib/python3.10/dist-packages (from tiktoken) (2024.11.6)\nRequirement already satisfied: requests>=2.26.0 in /usr/local/lib/python3.10/dist-packages (from tiktoken) (2.32.3)\nRequirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.26.0->tiktoken) (3.4.0)\nRequirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.26.0->tiktoken) (3.10)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.26.0->tiktoken) (2.2.3)\nRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.26.0->tiktoken) (2024.12.14)\n","output_type":"stream"}],"execution_count":8},{"cell_type":"code","source":"import tiktoken\n\nclass DataLoaderLite:\n def __init__(self, B, T):\n self.B = B\n self.T = T\n\n # at init load tokens from disk and store them in memory\n with open('/kaggle/input/transformers-input/input.txt', 'r') as f:\n text = f.read()\n enc = tiktoken.get_encoding('gpt2') \n tokens = enc.encode(text)\n self.tokens = torch.tensor(tokens)\n print(f'loaded {len(self.tokens)} tokens')\n print(f'1 epoch = {len(self.tokens) // (B * T)} batches')\n\n # state\n self.current_position = 0\n \n def next_batch(self):\n B, T = self.B, self.T\n buf = self.tokens[self.current_position: self.current_position + B * T + 1]\n x = (buf[:-1]).view(B, T) # inputs\n y = (buf[1:]).view(B, T) # targets\n # advance the position in the tensor\n self.current_position += B*T\n # if loading the next batch would be out of bounds, reset\n if self.current_position + (B * T + 1) > len(self.tokens):\n self.current_position = 0\n return x, y\n","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:40.943438Z","iopub.execute_input":"2025-01-16T01:11:40.943746Z","iopub.status.idle":"2025-01-16T01:11:40.988785Z","shell.execute_reply.started":"2025-01-16T01:11:40.943722Z","shell.execute_reply":"2025-01-16T01:11:40.988104Z"}},"outputs":[],"execution_count":9},{"cell_type":"code","source":"import logging\n\n# Configure logging\nlogging.basicConfig(filename='/kaggle/working/training_log.txt', level=logging.INFO, \n format='%(asctime)s - %(levelname)s - %(message)s', force=True)","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:43.834394Z","iopub.execute_input":"2025-01-16T01:11:43.834693Z","iopub.status.idle":"2025-01-16T01:11:43.839266Z","shell.execute_reply.started":"2025-01-16T01:11:43.834671Z","shell.execute_reply":"2025-01-16T01:11:43.838356Z"}},"outputs":[],"execution_count":10},{"cell_type":"code","source":"model = GPT(GPTConfig())\nmodel.to(device)\n\n# ... existing model initialization ...\n\n# Get model summary and parameter count\ntotal_params = sum(p.numel() for p in model.parameters())\ntrainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\nlogging.info(f'Total Parameters: {total_params:,}')\nlogging.info(f'Trainable Parameters: {trainable_params:,}')\n\n\ntrain_loader = DataLoaderLite(B = 4, T = 256)\noptimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)\n\n# Track best loss for model saving\nbest_loss = float('inf')\nbest_model_path = '/kaggle/working/best_model.pth'\ntarget_loss = 0.099999\nmax_iterations = 1000000 # Safety limit to prevent infinite loops\n\ni = 0\nwhile True:\n x, y = train_loader.next_batch()\n x, y = x.to(device), y.to(device)\n optimizer.zero_grad()\n logits, loss = model(x, y)\n loss.backward()\n optimizer.step()\n \n # Save best model\n if loss.item() < best_loss:\n best_loss = loss.item()\n torch.save({\n 'epoch': i,\n 'model_state_dict': model.state_dict(),\n 'optimizer_state_dict': optimizer.state_dict(),\n 'loss': best_loss,\n }, best_model_path)\n \n # Replace print statements with logging\n logging.info(f'step {i}, loss: {loss.item():.6f}, best loss: {best_loss:.6f}')\n \n # Check if target loss is reached\n if loss.item() <= target_loss:\n logging.info(f'\\nTarget loss reached! Training completed at step {i}')\n break\n \n # Safety check to prevent infinite training\n if i >= max_iterations:\n logging.info('\\nMaximum iterations reached without hitting target loss')\n break\n \n i += 1\n\nlogging.info(f'\\nTraining completed!')\nlogging.info(f'Final loss: {loss.item():.6f}')\nlogging.info(f'Best loss achieved: {best_loss:.6f}')\nlogging.info(f'Best model saved to: {best_model_path}')","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T01:11:51.706858Z","iopub.execute_input":"2025-01-16T01:11:51.707283Z","iopub.status.idle":"2025-01-16T02:14:36.050844Z","shell.execute_reply.started":"2025-01-16T01:11:51.707251Z","shell.execute_reply":"2025-01-16T02:14:36.049681Z"}},"outputs":[{"name":"stdout","text":"loaded 338025 tokens\n1 epoch = 330 batches\n","output_type":"stream"}],"execution_count":11},{"cell_type":"code","source":"import sys;\n\ntorch.manual_seed(42)\ntorch.cuda.manual_seed(42)\nwhile x.size(1) < max_length:\n # forward the model to get the logits\n with torch.no_grad():\n logits = model(x)[0] # (B, T, vocab_size)\n # take the logits at the last position\n logits = logits[:, -1, :] # (B, vocab_size)\n # get the probabilities\n probs = F.softmax(logits, dim=-1)\n # do top-k sampling of 50 (huggingface pipeline default)\n # topk_probs here becomes (5, 50), topk_indices is (5, 50)\n topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)\n # select a token from the top-k probabilities\n # note: multinomial does not demand the input to sum to 1\n ix = torch.multinomial(topk_probs, 1) # (B, 1)\n # gather the corresponding indices\n xcol = torch.gather(topk_indices, -1, ix) # (B, 1)\n # append to the sequence\n x = torch.cat((x, xcol), dim=1)","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T02:21:27.100740Z","iopub.execute_input":"2025-01-16T02:21:27.101343Z","iopub.status.idle":"2025-01-16T02:21:27.109634Z","shell.execute_reply.started":"2025-01-16T02:21:27.101308Z","shell.execute_reply":"2025-01-16T02:21:27.108902Z"}},"outputs":[],"execution_count":12},{"cell_type":"code","source":"enc = tiktoken.get_encoding('gpt2') \n# print the generated text\nfor i in range(num_return_sequences-1):\n tokens = x[i, :max_length].tolist()\n decoded = enc.decode(tokens)\n print(\">\", decoded)","metadata":{"trusted":true,"execution":{"iopub.status.busy":"2025-01-16T02:29:15.075790Z","iopub.execute_input":"2025-01-16T02:29:15.076153Z","iopub.status.idle":"2025-01-16T02:29:15.082856Z","shell.execute_reply.started":"2025-01-16T02:29:15.076121Z","shell.execute_reply":"2025-01-16T02:29:15.082202Z"}},"outputs":[{"name":"stdout","text":"> braved me in this matter so?\n\nBAPTISTA:\nWhy, tell me, is not this my Cambio?\n\n> ; thy father will not frown.\n\nGREMIO:\nMy cake is dough; but I'll in among the rest,\nOut of\n> scapes and perils overblown.\nMy fair Bianca, bid my father welcome,\nWhile I with self-same kindness welcome thine\n> afeard of you.\n\nWidow:\nHe that is giddy thinks the world turns round.\n\nPETRUCH\n","output_type":"stream"}],"execution_count":18},{"cell_type":"code","source":"","metadata":{"trusted":true},"outputs":[],"execution_count":null}]}
|
input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.68.0
|
2 |
+
uvicorn==0.15.0
|
3 |
+
jinja2==3.0.1
|
4 |
+
tiktoken
|
5 |
+
torch
|
6 |
+
transformers
|
7 |
+
aiofiles
|
8 |
+
fastapi
|
src/__pycache__/model.cpython-312.pyc
ADDED
Binary file (18.3 kB). View file
|
|
src/app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from fastapi import FastAPI, Request
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from transformers import PreTrainedModel, AutoConfig
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
import tiktoken
|
8 |
+
from model import GPT, GPTConfig
|
9 |
+
from fastapi.templating import Jinja2Templates
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
from fastapi.responses import HTMLResponse
|
12 |
+
from fastapi.staticfiles import StaticFiles
|
13 |
+
|
14 |
+
# Get the absolute path to the templates directory
|
15 |
+
TEMPLATES_DIR = os.path.join(os.path.dirname(__file__), "templates")
|
16 |
+
|
17 |
+
MODEL_ID = "sagargurujula/text-generator"
|
18 |
+
|
19 |
+
# Initialize FastAPI
|
20 |
+
app = FastAPI(title="GPT Text Generator")
|
21 |
+
|
22 |
+
# Templates with absolute path
|
23 |
+
templates = Jinja2Templates(directory=TEMPLATES_DIR)
|
24 |
+
|
25 |
+
# Add CORS middleware
|
26 |
+
app.add_middleware(
|
27 |
+
CORSMiddleware,
|
28 |
+
allow_origins=["*"],
|
29 |
+
allow_credentials=True,
|
30 |
+
allow_methods=["*"],
|
31 |
+
allow_headers=["*"],
|
32 |
+
)
|
33 |
+
|
34 |
+
# Set device
|
35 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
36 |
+
|
37 |
+
# Load model from Hugging Face Hub
|
38 |
+
def load_model():
|
39 |
+
try:
|
40 |
+
# Download the model file from HF Hub
|
41 |
+
model_path = hf_hub_download(
|
42 |
+
repo_id=MODEL_ID,
|
43 |
+
filename="best_model.pth"
|
44 |
+
)
|
45 |
+
|
46 |
+
# Initialize our custom GPT model
|
47 |
+
model = GPT(GPTConfig())
|
48 |
+
|
49 |
+
# Load the state dict
|
50 |
+
checkpoint = torch.load(model_path, map_location=device, weights_only=True)
|
51 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
52 |
+
|
53 |
+
model.to(device)
|
54 |
+
model.eval()
|
55 |
+
return model
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error loading model: {e}")
|
59 |
+
raise
|
60 |
+
|
61 |
+
# Load the model
|
62 |
+
model = load_model()
|
63 |
+
|
64 |
+
# Define the request body
|
65 |
+
class TextInput(BaseModel):
|
66 |
+
text: str
|
67 |
+
|
68 |
+
@app.post("/generate/")
|
69 |
+
async def generate_text(input: TextInput):
|
70 |
+
# Prepare input tensor
|
71 |
+
enc = tiktoken.get_encoding('gpt2')
|
72 |
+
input_ids = torch.tensor([enc.encode(input.text)]).to(device)
|
73 |
+
|
74 |
+
# Generate multiple tokens
|
75 |
+
generated_tokens = []
|
76 |
+
num_tokens_to_generate = 50 # Generate 20 new tokens
|
77 |
+
|
78 |
+
with torch.no_grad():
|
79 |
+
current_ids = input_ids
|
80 |
+
|
81 |
+
for _ in range(num_tokens_to_generate):
|
82 |
+
# Get model predictions
|
83 |
+
logits, _ = model(current_ids)
|
84 |
+
next_token = logits[0, -1, :].argmax().item()
|
85 |
+
generated_tokens.append(next_token)
|
86 |
+
|
87 |
+
# Add the new token to our current sequence
|
88 |
+
current_ids = torch.cat([current_ids, torch.tensor([[next_token]]).to(device)], dim=1)
|
89 |
+
|
90 |
+
# Decode all generated tokens
|
91 |
+
generated_text = enc.decode(generated_tokens)
|
92 |
+
|
93 |
+
# Return both input and generated text
|
94 |
+
return {
|
95 |
+
"input_text": input.text,
|
96 |
+
"generated_text": generated_text
|
97 |
+
}
|
98 |
+
|
99 |
+
# Modify the root route to serve the template
|
100 |
+
@app.get("/", response_class=HTMLResponse)
|
101 |
+
async def home(request: Request):
|
102 |
+
return templates.TemplateResponse(
|
103 |
+
"index.html",
|
104 |
+
{"request": request, "title": "GPT Text Generator"}
|
105 |
+
)
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
import uvicorn
|
109 |
+
uvicorn.run(app, host="127.0.0.1", port=8080)
|
110 |
+
|
111 |
+
# To run the app, use the command: uvicorn app:app --reload
|
src/model.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
import tiktoken
|
12 |
+
import logging
|
13 |
+
|
14 |
+
class CausalSelfAttention(nn.Module):
|
15 |
+
|
16 |
+
def __init__(self, config):
|
17 |
+
super().__init__()
|
18 |
+
assert config.n_embd % config.n_head == 0
|
19 |
+
# key, query, value projections for all heads, but in a batch
|
20 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
21 |
+
# output projection
|
22 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
23 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
24 |
+
# regularization
|
25 |
+
self.n_head = config.n_head
|
26 |
+
self.n_embd = config.n_embd
|
27 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
31 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
32 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
33 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
34 |
+
qkv = self.c_attn(x)
|
35 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
36 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
|
40 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
41 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
42 |
+
att = F.softmax(att, dim=-1)
|
43 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
44 |
+
|
45 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
46 |
+
# output projection
|
47 |
+
y = self.c_proj(y)
|
48 |
+
return y
|
49 |
+
|
50 |
+
class MLP(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self, config):
|
53 |
+
super().__init__()
|
54 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
55 |
+
self.gelu = nn.GELU(approximate='tanh')
|
56 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
57 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
x = self.c_fc(x)
|
61 |
+
x = self.gelu(x)
|
62 |
+
x = self.c_proj(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
class Block(nn.Module):
|
66 |
+
|
67 |
+
def __init__(self, config):
|
68 |
+
super().__init__()
|
69 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.attn = CausalSelfAttention(config)
|
71 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.mlp = MLP(config)
|
73 |
+
|
74 |
+
def forward(self, x):
|
75 |
+
x = x + self.attn(self.ln_1(x))
|
76 |
+
x = x + self.mlp(self.ln_2(x))
|
77 |
+
return x
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
97 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
98 |
+
))
|
99 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
100 |
+
|
101 |
+
# weight sharing
|
102 |
+
self.transformer.wte.weight = self.lm_head.weight
|
103 |
+
|
104 |
+
# weight initialization
|
105 |
+
self.apply(self._init_weights)
|
106 |
+
|
107 |
+
def _init_weights(self, module):
|
108 |
+
if isinstance(module, nn.Linear):
|
109 |
+
std = 0.02
|
110 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
111 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
112 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
113 |
+
if module.bias is not None:
|
114 |
+
torch.nn.init.zeros_(module.bias)
|
115 |
+
elif isinstance(module, nn.Embedding):
|
116 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
def forward(self, idx, targets=None):
|
121 |
+
# idx is of shape (B, T)
|
122 |
+
B, T = idx.size()
|
123 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
124 |
+
# forward the token and posisition embeddings
|
125 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
126 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
127 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
128 |
+
x = tok_emb + pos_emb
|
129 |
+
# forward the blocks of the transformer
|
130 |
+
for block in self.transformer.h:
|
131 |
+
x = block(x)
|
132 |
+
# forward the final layernorm and the classifier
|
133 |
+
x = self.transformer.ln_f(x)
|
134 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
135 |
+
loss = None
|
136 |
+
if targets is not None:
|
137 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
138 |
+
return logits, loss
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def from_pretrained(cls, model_type):
|
142 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
143 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
144 |
+
from transformers import GPT2LMHeadModel
|
145 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
146 |
+
|
147 |
+
# n_layer, n_head and n_embd are determined from model_type
|
148 |
+
config_args = {
|
149 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
150 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
151 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
152 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
153 |
+
}[model_type]
|
154 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
155 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
156 |
+
# create a from-scratch initialized minGPT model
|
157 |
+
config = GPTConfig(**config_args)
|
158 |
+
model = GPT(config)
|
159 |
+
sd = model.state_dict()
|
160 |
+
sd_keys = sd.keys()
|
161 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
162 |
+
|
163 |
+
# init a huggingface/transformers model
|
164 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
165 |
+
sd_hf = model_hf.state_dict()
|
166 |
+
|
167 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
168 |
+
sd_keys_hf = sd_hf.keys()
|
169 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
171 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
172 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
173 |
+
# this means that we have to transpose these weights when we import them
|
174 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
175 |
+
for k in sd_keys_hf:
|
176 |
+
if any(k.endswith(w) for w in transposed):
|
177 |
+
# special treatment for the Conv1D weights we need to transpose
|
178 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
179 |
+
with torch.no_grad():
|
180 |
+
sd[k].copy_(sd_hf[k].t())
|
181 |
+
else:
|
182 |
+
# vanilla copy over the other parameters
|
183 |
+
assert sd_hf[k].shape == sd[k].shape
|
184 |
+
with torch.no_grad():
|
185 |
+
sd[k].copy_(sd_hf[k])
|
186 |
+
|
187 |
+
return model
|
188 |
+
|
189 |
+
class DataLoaderLite:
|
190 |
+
def __init__(self, B, T):
|
191 |
+
self.B = B
|
192 |
+
self.T = T
|
193 |
+
|
194 |
+
# at init load tokens from disk and store them in memory
|
195 |
+
with open('/kaggle/input/transformers-input/input.txt', 'r') as f:
|
196 |
+
text = f.read()
|
197 |
+
enc = tiktoken.get_encoding('gpt2')
|
198 |
+
tokens = enc.encode(text)
|
199 |
+
self.tokens = torch.tensor(tokens)
|
200 |
+
print(f'loaded {len(self.tokens)} tokens')
|
201 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
202 |
+
|
203 |
+
# state
|
204 |
+
self.current_position = 0
|
205 |
+
|
206 |
+
def next_batch(self):
|
207 |
+
B, T = self.B, self.T
|
208 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
209 |
+
x = (buf[:-1]).view(B, T) # inputs
|
210 |
+
y = (buf[1:]).view(B, T) # targets
|
211 |
+
# advance the position in the tensor
|
212 |
+
self.current_position += B*T
|
213 |
+
# if loading the next batch would be out of bounds, reset
|
214 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
215 |
+
self.current_position = 0
|
216 |
+
return x, y
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
# model = GPT.from_pretrained('gpt2')
|
220 |
+
# Configure logging
|
221 |
+
logging.basicConfig(filename='/kaggle/working/training_log.txt', level=logging.INFO,
|
222 |
+
format='%(asctime)s - %(levelname)s - %(message)s', force=True)
|
223 |
+
|
224 |
+
device = 'cpu'
|
225 |
+
if torch.cuda.is_available():
|
226 |
+
device = 'cuda'
|
227 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
228 |
+
device = "mps"
|
229 |
+
print(f"using device: {device}")
|
230 |
+
|
231 |
+
# SEED
|
232 |
+
torch.manual_seed(1337)
|
233 |
+
if torch.cuda.is_available():
|
234 |
+
torch.cuda.manual_seed(1337)
|
235 |
+
|
236 |
+
# STOP
|
237 |
+
num_return_sequences = 5
|
238 |
+
max_length = 30
|
239 |
+
|
240 |
+
model = GPT(GPTConfig())
|
241 |
+
model.to(device)
|
242 |
+
|
243 |
+
# ... existing model initialization ...
|
244 |
+
|
245 |
+
# Get model summary and parameter count
|
246 |
+
total_params = sum(p.numel() for p in model.parameters())
|
247 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
248 |
+
logging.info(f'Total Parameters: {total_params:,}')
|
249 |
+
logging.info(f'Trainable Parameters: {trainable_params:,}')
|
250 |
+
|
251 |
+
|
252 |
+
train_loader = DataLoaderLite(B = 4, T = 256)
|
253 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
254 |
+
|
255 |
+
# Track best loss for model saving
|
256 |
+
best_loss = float('inf')
|
257 |
+
best_model_path = '/kaggle/working/best_model.pth'
|
258 |
+
target_loss = 0.099999
|
259 |
+
max_iterations = 1000000 # Safety limit to prevent infinite loops
|
260 |
+
|
261 |
+
i = 0
|
262 |
+
while True:
|
263 |
+
x, y = train_loader.next_batch()
|
264 |
+
x, y = x.to(device), y.to(device)
|
265 |
+
optimizer.zero_grad()
|
266 |
+
logits, loss = model(x, y)
|
267 |
+
loss.backward()
|
268 |
+
optimizer.step()
|
269 |
+
|
270 |
+
# Save best model
|
271 |
+
if loss.item() < best_loss:
|
272 |
+
best_loss = loss.item()
|
273 |
+
torch.save({
|
274 |
+
'epoch': i,
|
275 |
+
'model_state_dict': model.state_dict(),
|
276 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
277 |
+
'loss': best_loss,
|
278 |
+
}, best_model_path)
|
279 |
+
|
280 |
+
# Replace print statements with logging
|
281 |
+
logging.info(f'step {i}, loss: {loss.item():.6f}, best loss: {best_loss:.6f}')
|
282 |
+
|
283 |
+
# Check if target loss is reached
|
284 |
+
if loss.item() <= target_loss:
|
285 |
+
logging.info(f'\nTarget loss reached! Training completed at step {i}')
|
286 |
+
break
|
287 |
+
|
288 |
+
# Safety check to prevent infinite training
|
289 |
+
if i >= max_iterations:
|
290 |
+
logging.info('\nMaximum iterations reached without hitting target loss')
|
291 |
+
break
|
292 |
+
|
293 |
+
i += 1
|
294 |
+
|
295 |
+
logging.info(f'\nTraining completed!')
|
296 |
+
logging.info(f'Final loss: {loss.item():.6f}')
|
297 |
+
logging.info(f'Best loss achieved: {best_loss:.6f}')
|
298 |
+
logging.info(f'Best model saved to: {best_model_path}')
|
src/templates/index.html
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>GPT Text Generator</title>
|
5 |
+
<style>
|
6 |
+
body {
|
7 |
+
font-family: Arial, sans-serif;
|
8 |
+
max-width: 800px;
|
9 |
+
margin: 0 auto;
|
10 |
+
padding: 20px;
|
11 |
+
}
|
12 |
+
textarea {
|
13 |
+
width: 100%;
|
14 |
+
height: 100px;
|
15 |
+
margin: 10px 0;
|
16 |
+
padding: 10px;
|
17 |
+
font-size: 16px;
|
18 |
+
text-align: left;
|
19 |
+
}
|
20 |
+
#result {
|
21 |
+
margin-top: 20px;
|
22 |
+
padding: 15px;
|
23 |
+
border: 1px solid #ddd;
|
24 |
+
border-radius: 5px;
|
25 |
+
min-height: 50px;
|
26 |
+
white-space: pre-wrap;
|
27 |
+
background-color: #f9f9f9;
|
28 |
+
text-align: left;
|
29 |
+
font-size: 16px;
|
30 |
+
line-height: 1.5;
|
31 |
+
}
|
32 |
+
.loading {
|
33 |
+
opacity: 0.5;
|
34 |
+
}
|
35 |
+
button {
|
36 |
+
padding: 10px 20px;
|
37 |
+
font-size: 16px;
|
38 |
+
cursor: pointer;
|
39 |
+
display: block;
|
40 |
+
margin-bottom: 20px;
|
41 |
+
}
|
42 |
+
.label {
|
43 |
+
font-weight: bold;
|
44 |
+
display: block;
|
45 |
+
margin-bottom: 10px;
|
46 |
+
}
|
47 |
+
</style>
|
48 |
+
</head>
|
49 |
+
<body>
|
50 |
+
<h1>GPT Text Generator</h1>
|
51 |
+
<form id="generateForm">
|
52 |
+
<textarea id="inputText" placeholder="Enter your text here..."></textarea>
|
53 |
+
<button type="submit">Generate</button>
|
54 |
+
</form>
|
55 |
+
<div id="result"></div>
|
56 |
+
|
57 |
+
<script>
|
58 |
+
document.getElementById('generateForm').addEventListener('submit', async (e) => {
|
59 |
+
e.preventDefault();
|
60 |
+
|
61 |
+
const inputText = document.getElementById('inputText').value;
|
62 |
+
const resultDiv = document.getElementById('result');
|
63 |
+
const submitButton = document.querySelector('button[type="submit"]');
|
64 |
+
|
65 |
+
// Show loading state
|
66 |
+
submitButton.disabled = true;
|
67 |
+
resultDiv.classList.add('loading');
|
68 |
+
resultDiv.textContent = 'Generating...';
|
69 |
+
|
70 |
+
try {
|
71 |
+
const response = await fetch('/generate/', {
|
72 |
+
method: 'POST',
|
73 |
+
headers: {
|
74 |
+
'Content-Type': 'application/json',
|
75 |
+
},
|
76 |
+
body: JSON.stringify({ text: inputText })
|
77 |
+
});
|
78 |
+
|
79 |
+
const data = await response.json();
|
80 |
+
resultDiv.innerHTML = `
|
81 |
+
<div class="label">Input:</div>
|
82 |
+
${data.input_text}
|
83 |
+
|
84 |
+
<div class="label" style="margin-top: 20px;">Generated continuation:</div>
|
85 |
+
${data.generated_text}
|
86 |
+
`;
|
87 |
+
} catch (error) {
|
88 |
+
console.error('Error:', error);
|
89 |
+
resultDiv.textContent = 'Error generating text. Please try again.';
|
90 |
+
} finally {
|
91 |
+
// Reset loading state
|
92 |
+
submitButton.disabled = false;
|
93 |
+
resultDiv.classList.remove('loading');
|
94 |
+
}
|
95 |
+
});
|
96 |
+
</script>
|
97 |
+
</body>
|
98 |
+
</html>
|
train_get2-8-init.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
|
242 |
+
model = GPT(GPTConfig())
|
243 |
+
model.to(device)
|
244 |
+
|
245 |
+
train_loader = DataLoaderLite(B = 4, T = 32)
|
246 |
+
|
247 |
+
# NEW CODE
|
248 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
249 |
+
for i in range(50):
|
250 |
+
x, y = train_loader.next_batch()
|
251 |
+
x, y = x.to(device), y.to(device)
|
252 |
+
optimizer.zero_grad()
|
253 |
+
logits, loss = model(x, y)
|
254 |
+
loss.backward()
|
255 |
+
optimizer.step()
|
256 |
+
print(f'step{i}, loss: {loss.item()}')
|
257 |
+
|
258 |
+
|
259 |
+
print(loss)
|
260 |
+
import sys; sys.exit(0)
|
261 |
+
|
262 |
+
torch.manual_seed(42)
|
263 |
+
torch.cuda.manual_seed(42)
|
264 |
+
while x.size(1) < max_length:
|
265 |
+
# forward the model to get the logits
|
266 |
+
with torch.no_grad():
|
267 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
268 |
+
# take the logits at the last position
|
269 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
270 |
+
# get the probabilities
|
271 |
+
probs = F.softmax(logits, dim=-1)
|
272 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
273 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
274 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
275 |
+
# select a token from the top-k probabilities
|
276 |
+
# note: multinomial does not demand the input to sum to 1
|
277 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
278 |
+
# gather the corresponding indices
|
279 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
280 |
+
# append to the sequence
|
281 |
+
x = torch.cat((x, xcol), dim=1)
|
282 |
+
|
283 |
+
# print the generated text
|
284 |
+
for i in range(num_return_sequences):
|
285 |
+
tokens = x[i, :max_length].tolist()
|
286 |
+
decoded = enc.decode(tokens)
|
287 |
+
print(">", decoded)
|
training_log.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|