Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- inference.py +31 -0
- main.py +30 -0
inference.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#### text to Image on Gradio UI
|
3 |
+
import torch
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
# Provide the file path to your locally stored model file
|
9 |
+
model_file_path = "/model/file/path/to/model/directory/"
|
10 |
+
|
11 |
+
# Provide the url to model id
|
12 |
+
url = "runwayml/stable-diffusion-v1-5"
|
13 |
+
|
14 |
+
# Load the safetensor model
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(url)
|
16 |
+
# Metal performance shader(mps) to optimize infernece using Mac built-in gpu : pipe = pipe.to("mps")
|
17 |
+
|
18 |
+
def predict(text):
|
19 |
+
# Ensure pipe(text) returns the correct output format
|
20 |
+
generated_image = pipe(text).images[0]
|
21 |
+
return generated_image
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
demo = gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs='text',
|
28 |
+
outputs='image',
|
29 |
+
)
|
30 |
+
|
31 |
+
demo.launch(server_name="0.0.0.0", server_port=7000)
|
main.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## mounting Gradio on fast api
|
3 |
+
|
4 |
+
from fastapi import FastAPI
|
5 |
+
import gradio as gr
|
6 |
+
from Model.inference import demo
|
7 |
+
|
8 |
+
# Define your predict function
|
9 |
+
def predict(text):
|
10 |
+
# Your prediction logic here
|
11 |
+
return text[::-1] # Just an example, reverse the input text
|
12 |
+
|
13 |
+
# Create a Gradio interface
|
14 |
+
demo = gr.Interface(
|
15 |
+
fn=predict,
|
16 |
+
inputs='text',
|
17 |
+
outputs='text',
|
18 |
+
title='Text Reversal' # Add a title for the Gradio UI
|
19 |
+
)
|
20 |
+
|
21 |
+
# Create a FastAPI app
|
22 |
+
app = FastAPI()
|
23 |
+
|
24 |
+
# Define your root route
|
25 |
+
@app.get('/')
|
26 |
+
async def root():
|
27 |
+
return 'Gradio is running', 200
|
28 |
+
|
29 |
+
# Mount the Gradio interface onto the FastAPI app
|
30 |
+
app = gr.mount_gradio_app(app, demo, path='/gradio')
|