sagar007's picture
Update app.py
bf7ef8a verified
raw
history blame
6.31 kB
import gradio as gr
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
# configurations
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
height, width = 512, 512
guidance_scale = 8
loss_scale = 200
num_inference_steps = 10
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
model_path,
low_cpu_mem_usage = True,
torch_dtype=torch.float32
).to(torch_device)
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
styles_mapping = {
"Illustration Style": '<illustration-style>', "Line Art":'<line-art>',
"Hitokomoru Style":'<hitokomoru-style-nao>', "Marc Allante": '<Marc_Allante>',
"Midjourney":'<midjourney-style>', "Hanfu Anime": '<hanfu-anime-style>',
"Birb Style": '<birb-style>'
}
# Define seeds for all the styles
seed_list = [11, 56, 110, 65, 5, 29, 47]
# Optimized loss computation functions
def edge_detection(image):
channels = image.shape[1]
kernels = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1],
[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=image.device).float()
kernels = kernels.view(2, 1, 3, 3).repeat(channels, 1, 1, 1)
padded_image = F.pad(image, (1, 1, 1, 1), mode='replicate')
edge = F.conv2d(padded_image, kernels, groups=channels)
return torch.sqrt(edge[:, :channels]**2 + edge[:, channels:]**2)
def compute_loss(original_image, loss_type: str):
if loss_type == 'blue':
return torch.abs(original_image[:,2] - 0.9).mean()
elif loss_type == 'edge':
ed_value = edge_detection(original_image)
return F.mse_loss(ed_value, (ed_value > 0.5).float())
elif loss_type == 'contrast':
transformed_image = TF.adjust_contrast(original_image, contrast_factor=2.0)
return torch.abs(transformed_image - original_image).mean()
elif loss_type == 'brightness':
transformed_image = TF.adjust_brightness(original_image, brightness_factor=2.0)
return torch.abs(transformed_image - original_image).mean()
elif loss_type == 'sharpness':
transformed_image = TF.adjust_sharpness(original_image, sharpness_factor=2.0)
return torch.abs(transformed_image - original_image).mean()
elif loss_type == 'saturation':
transformed_image = TF.adjust_saturation(original_image, saturation_factor=10.0)
return torch.abs(transformed_image - original_image).mean()
else:
return torch.tensor(0.0, device=original_image.device)
# Optimized generate_image function
def generate_image(seed, prompt, loss_type, loss_flag=False):
generator = torch.manual_seed(seed)
batch_size = 1
text_embeddings = sd_pipeline._encode_prompt(prompt, sd_pipeline.device, 1, True)
latents = torch.randn(
(batch_size, sd_pipeline.unet.config.in_channels, height // 8, width // 8),
generator=generator,
).to(sd_pipeline.device)
latents = latents * sd_pipeline.scheduler.init_noise_sigma
sd_pipeline.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(sd_pipeline.scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = sd_pipeline.scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = sd_pipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if loss_flag and i % 5 == 0:
latents = latents.detach().requires_grad_()
latents_x0 = sd_pipeline.scheduler.step(noise_pred, t, latents).prev_sample
with torch.no_grad():
denoised_images = sd_pipeline.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
loss = compute_loss(denoised_images, loss_type) * loss_scale
print(f"Step {i}, Loss: {loss.item():.4f}")
cond_grad = torch.autograd.grad(loss, latents)[0]
latents = latents.detach() - cond_grad * sd_pipeline.scheduler.sigmas[i] ** 2
latents = sd_pipeline.scheduler.step(noise_pred, t, latents).prev_sample
return latents
def generate_image(prompt, style, guidance_type):
styled_prompt = f"{prompt} in the style of {styles_mapping[style]}"
seed = torch.randint(0, 1000000, (1,)).item()
latents = generate_image(seed, styled_prompt, guidance_type, loss_flag=True)
with torch.no_grad():
image = sd_pipeline.decode_latents(latents)
image = sd_pipeline.numpy_to_pil(image)[0]
return image
def get_examples():
examples = [
["A bird sitting on a tree", "Midjourney", "edge"],
["Cats fighting on the road", "Marc Allante", "brightness"],
["A mouse with the head of a puppy", "Hitokomoru Style", "contrast"],
["A woman with a smiling face in front of an Italian Pizza", "Hanfu Anime", "brightness"],
["A campfire (oil on canvas)", "Birb Style", "blue"],
]
return examples
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Dropdown(list(styles_mapping.keys()), label="Style"),
gr.Dropdown(["blue", "edge", "contrast", "brightness", "sharpness", "saturation"], label="Guidance Type"),
],
outputs=gr.Image(label="Generated Image"),
title="Stable Diffusion with Custom Styles",
description="Generate images using a custom Stable Diffusion model with various styles and guidance types.",
examples=get_examples(),
)
iface.launch()