Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from tqdm import tqdm | |
from PIL import Image | |
import torch.nn.functional as F | |
from torchvision import transforms as tfms | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" | |
# Load the pipeline | |
model_path = "CompVis/stable-diffusion-v1-4" | |
sd_pipeline = DiffusionPipeline.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float32 | |
).to(torch_device) | |
# Load textual inversions | |
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style") | |
# Update style token dictionary | |
style_token_dict = { | |
"Illustration Style": '<illustration-style>', | |
"Line Art":'<line-art>', | |
"Hitokomoru Style":'<hitokomoru-style-nao>', | |
"Marc Allante": '<Marc_Allante>', | |
"Midjourney":'<midjourney-style>', | |
"Hanfu Anime": '<hanfu-anime-style>', | |
"Birb Style": '<birb-style>' | |
} | |
def apply_guidance(image, guidance_method, loss_scale): | |
# Convert PIL Image to tensor | |
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device) | |
if guidance_method == 'Grayscale': | |
gray = tfms.Grayscale(3)(img_tensor) | |
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Bright': | |
bright = F.relu(img_tensor) # Simple brightness increase | |
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Contrast': | |
mean = img_tensor.mean() | |
contrast = (img_tensor - mean) * 2 + mean | |
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Symmetry': | |
flipped = torch.flip(img_tensor, [3]) # Flip horizontally | |
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Saturation': | |
saturated = tfms.functional.adjust_saturation(img_tensor, 2) | |
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000) | |
else: | |
return image | |
# Convert back to PIL Image | |
guided = guided.squeeze(0).clamp(0, 1) | |
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy() | |
return Image.fromarray(guided) | |
def generate_with_guidance(prompt, num_inference_steps, guidance_scale, seed, guidance_method, loss_scale): | |
# Generate image with pipeline | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
image = sd_pipeline( | |
prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images[0] | |
# Apply guidance | |
guided_image = apply_guidance(image, guidance_method, loss_scale) | |
return guided_image | |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale): | |
prompt = text + " " + style_token_dict[style] | |
# Generate image with pipeline | |
image_pipeline = sd_pipeline( | |
prompt, | |
num_inference_steps=inference_step, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device=torch_device).manual_seed(seed) | |
).images[0] | |
# Generate image with guidance | |
image_guide = generate_with_guidance(prompt, inference_step, guidance_scale, seed, guidance_method, loss_scale) | |
return image_pipeline, image_guide | |
title = "Generative with Textual Inversion and Guidance" | |
description = "A Gradio interface to infer Stable Diffusion and generate images with different art styles and guidance methods" | |
examples = [ | |
["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200] | |
] | |
demo = gr.Interface(inference, | |
inputs = [gr.Textbox(label="Prompt", type="text"), | |
gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style"), | |
gr.Slider(1, 50, 10, step = 1, label="Inference steps"), | |
gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"), | |
gr.Slider(0, 10000, 42, step = 1, label="Seed"), | |
gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', | |
'Symmetry', 'Saturation'], value="Grayscale"), | |
gr.Slider(100, 10000, 200, step = 100, label="Loss scale")], | |
outputs= [gr.Image(width=512, height=512, label="Generated art"), | |
gr.Image(width=512, height=512, label="Generated art with guidance")], | |
title=title, | |
description=description, | |
examples=examples) | |
demo.launch() |