Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from tqdm import tqdm | |
from PIL import Image | |
import torch.nn.functional as F | |
from torchvision import transforms as tfms | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline | |
HTML_TEMPLATE = """ | |
<style> | |
body { | |
background: linear-gradient(135deg, #f5f7fa, #c3cfe2); | |
} | |
#app-header { | |
text-align: center; | |
background: rgba(255, 255, 255, 0.8); | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
position: relative; | |
} | |
#app-header h1 { | |
color: #4CAF50; | |
font-size: 2em; | |
margin-bottom: 10px; | |
} | |
.concept { | |
position: relative; | |
transition: transform 0.3s; | |
} | |
.concept:hover { | |
transform: scale(1.1); | |
} | |
.concept img { | |
width: 100px; | |
border-radius: 10px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.concept-description { | |
position: absolute; | |
bottom: -30px; | |
left: 50%; | |
transform: translateX(-50%); | |
background-color: #4CAF50; | |
color: white; | |
padding: 5px 10px; | |
border-radius: 5px; | |
opacity: 0; | |
transition: opacity 0.3s; | |
} | |
.concept:hover .concept-description { | |
opacity: 1; | |
} | |
.artifact { | |
position: absolute; | |
background: rgba(76, 175, 80, 0.1); | |
border-radius: 50%; | |
} | |
.artifact.large { | |
width: 300px; | |
height: 300px; | |
top: -50px; | |
left: -150px; | |
} | |
.artifact.medium { | |
width: 200px; | |
height: 200px; | |
bottom: -50px; | |
right: -100px; | |
} | |
.artifact.small { | |
width: 100px; | |
height: 100px; | |
top: 50%; | |
left: 50%; | |
transform: translate(-50%, -50%); | |
} | |
</style> | |
<div id="app-header"> | |
<div class="artifact large"></div> | |
<div class="artifact medium"></div> | |
<div class="artifact small"></div> | |
<h1>Generative Art with Textual Inversion and Guidance</h1> | |
<p>Generate unique art using different styles and guidance methods.</p> | |
<div style="display: flex; justify-content: center; gap: 20px; margin-top: 20px;"> | |
<div class="concept"> | |
<img src="https://example.com/illustration-style.jpg" alt="Illustration Style"> | |
<div class="concept-description">Illustration Style</div> | |
</div> | |
<div class="concept"> | |
<img src="https://example.com/line-art.jpg" alt="Line Art"> | |
<div class="concept-description">Line Art</div> | |
</div> | |
<!-- Add more concepts here for each style in your style_token_dict --> | |
</div> | |
</div> | |
""" | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" | |
# Load the pipeline | |
model_path = "CompVis/stable-diffusion-v1-4" | |
sd_pipeline = DiffusionPipeline.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float32 | |
).to(torch_device) | |
# Load textual inversions | |
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style") | |
# Update style token dictionary | |
style_token_dict = { | |
"Illustration Style": '<illustration-style>', | |
"Line Art":'<line-art>', | |
"Hitokomoru Style":'<hitokomoru-style-nao>', | |
"Marc Allante": '<Marc_Allante>', | |
"Midjourney":'<midjourney-style>', | |
"Hanfu Anime": '<hanfu-anime-style>', | |
"Birb Style": '<birb-style>' | |
} | |
def apply_guidance(image, guidance_method, loss_scale): | |
# Convert PIL Image to tensor | |
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device) | |
if guidance_method == 'Grayscale': | |
gray = tfms.Grayscale(3)(img_tensor) | |
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Bright': | |
bright = F.relu(img_tensor) # Simple brightness increase | |
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Contrast': | |
mean = img_tensor.mean() | |
contrast = (img_tensor - mean) * 2 + mean | |
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Symmetry': | |
flipped = torch.flip(img_tensor, [3]) # Flip horizontally | |
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Saturation': | |
saturated = tfms.functional.adjust_saturation(img_tensor, 2) | |
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000) | |
else: | |
return image | |
# Convert back to PIL Image | |
guided = guided.squeeze(0).clamp(0, 1) | |
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy() | |
return Image.fromarray(guided) | |
def generate_with_guidance(prompt, num_inference_steps, guidance_scale, seed, guidance_method, loss_scale): | |
# Generate image with pipeline | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
image = sd_pipeline( | |
prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images[0] | |
# Apply guidance | |
guided_image = apply_guidance(image, guidance_method, loss_scale) | |
return guided_image | |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale): | |
prompt = text + " " + style_token_dict[style] | |
# Generate image with pipeline | |
image_pipeline = sd_pipeline( | |
prompt, | |
num_inference_steps=inference_step, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device=torch_device).manual_seed(seed) | |
).images[0] | |
# Generate image with guidance | |
image_guide = generate_with_guidance(prompt, inference_step, guidance_scale, seed, guidance_method, loss_scale) | |
return image_pipeline, image_guide | |
title = "Generative with Textual Inversion and Guidance" | |
description = "A Gradio interface to infer Stable Diffusion and generate images with different art styles and guidance methods" | |
examples = [ | |
["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200] | |
] | |
title = "Generative Art with Textual Inversion and Guidance" | |
description = "Create unique artworks using Stable Diffusion with various styles and guidance methods." | |
with gr.Blocks(css=HTML_TEMPLATE) as demo: | |
gr.HTML(HTML_TEMPLATE) # This adds the styled header to your app | |
with gr.Row(): | |
text = gr.Textbox(label="Prompt", placeholder="Enter your creative prompt here...") | |
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style") | |
with gr.Row(): | |
inference_step = gr.Slider(1, 50, 10, step=1, label="Inference steps") | |
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale") | |
seed = gr.Slider(0, 10000, 42, step=1, label="Seed") | |
with gr.Row(): | |
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale") | |
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale") | |
with gr.Row(): | |
generate_button = gr.Button("Generate Art") | |
with gr.Row(): | |
output_image = gr.Image(width=512, height=512, label="Generated art") | |
output_image_guided = gr.Image(width=512, height=512, label="Generated art with guidance") | |
generate_button.click( | |
inference, | |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale], | |
outputs=[output_image, output_image_guided] | |
) | |
gr.Examples( | |
examples=[ | |
["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200] | |
], | |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale], | |
outputs=[output_image, output_image_guided], | |
fn=inference, | |
cache_examples=True, | |
) | |
demo.launch() |