File size: 8,587 Bytes
5f38454
 
 
 
 
 
 
 
 
 
2700e0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f38454
 
 
 
 
 
 
 
f538afb
5f38454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc757a
 
 
 
5f38454
fdc757a
 
5f38454
fdc757a
 
5f38454
fdc757a
 
 
5f38454
fdc757a
 
5f38454
fdc757a
 
5f38454
fdc757a
 
 
 
 
 
5f38454
 
fdc757a
5f38454
fdc757a
 
 
 
 
 
 
 
 
5f38454
fdc757a
5f38454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad86ac
5f38454
 
2700e0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f38454
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import torch
import gradio as gr
from tqdm import tqdm
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline

HTML_TEMPLATE = """
<style>
    body {
        background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
    }
    #app-header {
        text-align: center;
        background: rgba(255, 255, 255, 0.8);
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        position: relative;
    }
    #app-header h1 {
        color: #4CAF50;
        font-size: 2em;
        margin-bottom: 10px;
    }
    .concept {
        position: relative;
        transition: transform 0.3s;
    }
    .concept:hover {
        transform: scale(1.1);
    }
    .concept img {
        width: 100px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .concept-description {
        position: absolute;
        bottom: -30px;
        left: 50%;
        transform: translateX(-50%);
        background-color: #4CAF50;
        color: white;
        padding: 5px 10px;
        border-radius: 5px;
        opacity: 0;
        transition: opacity 0.3s;
    }
    .concept:hover .concept-description {
        opacity: 1;
    }
    .artifact {
        position: absolute;
        background: rgba(76, 175, 80, 0.1);
        border-radius: 50%;
    }
    .artifact.large {
        width: 300px;
        height: 300px;
        top: -50px;
        left: -150px;
    }
    .artifact.medium {
        width: 200px;
        height: 200px;
        bottom: -50px;
        right: -100px;
    }
    .artifact.small {
        width: 100px;
        height: 100px;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
    }
</style>
<div id="app-header">
    <div class="artifact large"></div>
    <div class="artifact medium"></div>
    <div class="artifact small"></div>
    <h1>Generative Art with Textual Inversion and Guidance</h1>
    <p>Generate unique art using different styles and guidance methods.</p>
    <div style="display: flex; justify-content: center; gap: 20px; margin-top: 20px;">
        <div class="concept">
            <img src="https://example.com/illustration-style.jpg" alt="Illustration Style">
            <div class="concept-description">Illustration Style</div>
        </div>
        <div class="concept">
            <img src="https://example.com/line-art.jpg" alt="Line Art">
            <div class="concept-description">Line Art</div>
        </div>
        <!-- Add more concepts here for each style in your style_token_dict -->
    </div>
</div>
"""

torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"

# Load the pipeline
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
    model_path,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16
).to(torch_device)

# Load textual inversions
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")

# Update style token dictionary
style_token_dict = {
    "Illustration Style": '<illustration-style>',
    "Line Art":'<line-art>',
    "Hitokomoru Style":'<hitokomoru-style-nao>',
    "Marc Allante": '<Marc_Allante>',
    "Midjourney":'<midjourney-style>',
    "Hanfu Anime": '<hanfu-anime-style>',
    "Birb Style": '<birb-style>'
}

def apply_guidance(image, guidance_method, loss_scale):
    # Convert PIL Image to tensor
    img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
    
    if guidance_method == 'Grayscale':
        gray = tfms.Grayscale(3)(img_tensor)
        guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Bright':
        bright = F.relu(img_tensor)  # Simple brightness increase
        guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Contrast':
        mean = img_tensor.mean()
        contrast = (img_tensor - mean) * 2 + mean
        guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Symmetry':
        flipped = torch.flip(img_tensor, [3])  # Flip horizontally
        guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Saturation':
        saturated = tfms.functional.adjust_saturation(img_tensor, 2)
        guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
    else:
        return image

    # Convert back to PIL Image
    guided = guided.squeeze(0).clamp(0, 1)
    guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
    return Image.fromarray(guided)

def generate_with_guidance(prompt, num_inference_steps, guidance_scale, seed, guidance_method, loss_scale):
    # Generate image with pipeline
    generator = torch.Generator(device=torch_device).manual_seed(seed)
    image = sd_pipeline(
        prompt,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator
    ).images[0]

    # Apply guidance
    guided_image = apply_guidance(image, guidance_method, loss_scale)
    
    return guided_image

def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
    prompt = text + " " + style_token_dict[style]

    # Generate image with pipeline
    image_pipeline = sd_pipeline(
        prompt,
        num_inference_steps=inference_step,
        guidance_scale=guidance_scale,
        generator=torch.Generator(device=torch_device).manual_seed(seed)
    ).images[0]

    # Generate image with guidance
    image_guide = generate_with_guidance(prompt, inference_step, guidance_scale, seed, guidance_method, loss_scale)

    return image_pipeline, image_guide

title = "Generative with Textual Inversion and Guidance"
description = "A Gradio interface to infer Stable Diffusion and generate images with different art styles and guidance methods"
examples = [
    ["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200]
]

title = "Generative Art with Textual Inversion and Guidance"
description = "Create unique artworks using Stable Diffusion with various styles and guidance methods."

with gr.Blocks(css=HTML_TEMPLATE) as demo:
    gr.HTML(HTML_TEMPLATE)  # This adds the styled header to your app
    with gr.Row():
        text = gr.Textbox(label="Prompt", placeholder="Enter your creative prompt here...")
        style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style")
    with gr.Row():
        inference_step = gr.Slider(1, 50, 10, step=1, label="Inference steps")
        guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale")
        seed = gr.Slider(0, 10000, 42, step=1, label="Seed")
    with gr.Row():
        guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale")
        loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale")
    with gr.Row():
        generate_button = gr.Button("Generate Art")
    with gr.Row():
        output_image = gr.Image(width=512, height=512, label="Generated art")
        output_image_guided = gr.Image(width=512, height=512, label="Generated art with guidance")
    
    generate_button.click(
        inference,
        inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale],
        outputs=[output_image, output_image_guided]
    )

    gr.Examples(
        examples=[
            ["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200]
        ],
        inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale],
        outputs=[output_image, output_image_guided],
        fn=inference,
        cache_examples=True,
    )

demo.launch()