File size: 6,383 Bytes
6c2fd08
4ca155b
 
02cf0bb
85585aa
6c2fd08
85585aa
4ca155b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85585aa
02cf0bb
4ca155b
02cf0bb
5ae24e1
 
 
 
 
 
 
 
 
 
02cf0bb
 
6c2fd08
85585aa
5ae24e1
02cf0bb
6c2fd08
85585aa
 
02cf0bb
85585aa
02cf0bb
 
 
4ca155b
85585aa
 
 
 
 
 
 
 
 
 
 
 
 
02cf0bb
85585aa
02cf0bb
85585aa
 
02cf0bb
 
85585aa
 
6c2fd08
02cf0bb
85585aa
 
 
02cf0bb
85585aa
6c2fd08
02cf0bb
85585aa
 
 
6c2fd08
02cf0bb
85585aa
 
6c2fd08
 
02cf0bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr

# Define the model architecture
class GPTConfig:
    def __init__(self):
        self.block_size = 1024
        self.vocab_size = 50304
        self.n_layer = 12
        self.n_head = 12
        self.n_embd = 768

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        return self.c_proj(y)

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)

    def forward(self, x):
        return self.c_proj(self.gelu(self.c_fc(x)))

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
        
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = tok_emb + pos_emb
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)
        
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        
        return logits, loss

# Load the model
def load_model(model_path):
    config = GPTConfig()
    model = GPT(config)
    
    checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
    
    print("Checkpoint keys:", checkpoint.keys())  # Debug print
    
    if 'model_state_dict' in checkpoint:
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        model.load_state_dict(checkpoint)
    
    model.eval()
    return model

# Load the model
model = load_model('gpt_5000.pt')  # Replace with the actual path to your .pt file
enc = tiktoken.get_encoding('gpt2')

# Improved text generation function
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
    input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
    generated = []
    
    with torch.no_grad():
        for _ in range(max_length):
            outputs, _ = model(input_ids)
            next_token_logits = outputs[:, -1, :]
            
            # Apply temperature
            next_token_logits = next_token_logits / temperature
            
            # Apply top-k filtering
            top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
            next_token_probs = F.softmax(top_k_logits, dim=-1)
            
            # Sample from the filtered distribution
            next_token_index = torch.multinomial(next_token_probs, num_samples=1)
            next_token = top_k_indices.gather(-1, next_token_index)
            
            input_ids = torch.cat([input_ids, next_token], dim=-1)
            generated.append(next_token.item())
            
            # Stop if we generate a newline, but only after generating at least 20 tokens
            if next_token.item() == enc.encode('\n')[0] and len(generated) > 20:
                break
    
    generated_text = enc.decode(generated)
    return prompt + generated_text

# Gradio interface
def gradio_generate(prompt, max_length, temperature, top_k):
    return generate_text(prompt, max_length, temperature, top_k)

iface = gr.Interface(
    fn=gradio_generate,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
        gr.Slider(minimum=20, maximum=500, value=100, step=1, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="GPT Text Generator",
    description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model."
)

# Launch the app
iface.launch()